Difference between revisions of "Mechadense's Wiki about Atomically Precise Manufacturing"

From apm
Jump to: navigation, search
(Today and near term: major improvement - but grows to big again)
 
(86 intermediate revisions by the same user not shown)
Line 1: Line 1:
{| border="0"
+
__NOTOC__
|style="background:#FFCCCC; color:#000000; width: 80%; text-align:center;" |  '''Language: en | [[Mechandense's Wiki über atomar präzise Herstellung| Sprache: de]]'''
+
{{PatreonBanner}}
|}
+
= The far term target =
* '''[[General Introduction to atomically precise manufacturing|Intro:]]''' Here is a detailed introduction to atomically precise manufacturing as a whole.
+
* [[The DAPMAT demo project]]
+
 
+
= The far term goal =
+
  
 
{{Template:Nanofactory introduction}}
 
{{Template:Nanofactory introduction}}
  
The existence of a personal fabricator will have profound impact human society on a global scale.
+
The existence of a personal fabricator will have profound impact human society on a global scale. <br>
 
The basis for such a personal fabricator - the '''atomically precise manufacturing (APM) technology''' - is beginning to be figured out today.
 
The basis for such a personal fabricator - the '''atomically precise manufacturing (APM) technology''' - is beginning to be figured out today.
  
= Guided Tour =
+
= Dodge the trapdoors =
 +
[[File:Assemblies-gears-srg-iii.gif |300px|thumb|right|Gear-train (cut open). Author: Mark Sims – '''Don't be fooled by the [[stroboscopic illusion in animations of diamondoid molecular machine elements]].''' The proposed average operation speeds in [[gem-gum factories]] are quite slow actually. Nowhere near the speed of sound.]]
  
__NOTOC__
+
First off: Let's get the major obstacles out of the way.
Here forms a general introduction to atomically precise manufacturing.
+
* '''There are no "nanobots" here!''' <br>Check the info pages "[[Prime distractions]]" and "[[No nanobots]]".
The introductory tour is meant for a wide target audience ranging from newbie to expert and from young to old.
+
* '''Macroscale style machinery at the nanoscale?!''' (machinery like [[example crystolecules|this]])<br> It's well known, that there are several severe concerns regarding this idea. And for very good reasons.<br> Less known is, that all of those major concerns have been considered in quite some detail with rather surprising results. <br>Check out the main article discussing the concerns here: <br>[[Macroscale style machinery at the nanoscale]]
(Advanced readers should be able to quickly dive deeper via [[progressive disclosure]]).
+
-----
 +
* '''Yes, lifes nanomachinery (molecular biology) does NOT constitute a feasibility proof of the targeted kind of technology.''' <br>But it does not constitute an infeasibility proof either. For details see: "[[Nature does it differently]]". <br>What does provide the very high confidence in feasibility is low level [[exploratory engineering]] applied without compromises. <br>Additionally there are successful experimental demonstrations of manipulation of single atoms. Repeatable, precise, with strong covalent bonds, and at decently high temperatures ("decently high" meaning: no liquid helium involved). Plus there's a clear path how to speed this up to the necessary operations frequencies. Namely by scaling down the placement mechanisms.
 +
* '''No, making every structure permitted by physical law is NOT the goal here.''' Quite the contrary actually. What we want is to cheat and make it seem as if we could. It's even encoded in the name that this wiki uses to refer to the far term target. Specifically in the "gem" and "gum" parts in "gem-gum-tec". For details check out: "[[The defining traits of gem-gum-tec]]" and "[[Every structure permissible by physical law]]".
 +
* '''No, using soft nanomachinery to bootstrap stiff nanomachinery is not an abandonment of principles.''' It just might be a more practical approach to get to the target faster. See: "[[Pathways]]".
 +
-----
 +
* '''No, nanoscale physics and [[quantum mechanics]] is not inherently incomprehensible.''' <br>It is very possible, satisfying, and useful to develop an [[intuitive feel]] for these things.
  
Please excuse the links dangling into construction sites.<br>
+
== What APM is not ==
The tour is still a far stretch from being in a somewhat coherent state.
+
[[File:The_Inner_Life_of_the_Cell.jpg |300px|thumb|right|Source: [https://en.wikipedia.org/wiki/The_Inner_Life_of_the_Cell Animation video: "The Inner Life of the Cell"] – '''Recreating the molecular machinery of life is NOT the far term goal of atomically precise manufacturing.''' It is one goal of [[synthetic biology]] which goes in a very different direction. The molecular machinery of life though is a valuable resource for (1) [[bootstrapping]] towards [[gem-gum]] systems and (2) learning lower level concepts like e.g. the [[coordination geometries]] in active sites of enzymes).]]
  
== Tour by topic ==
+
While early APM may have overlap with these areas the far term goals are very different.
  
{{Template:Orientation}}
+
* [[Soft nanomachines]]: APM is all about targeting [[stiffness]] / stiff nanomachines / "hard" nanomachines. <br>Nonetheless soft nanomachines can be very useful in the bootstrapping process. <br><small>Note though, that self assembly (useful in bootstrapping) does not essentially rely on a lack of stiffness aka softness. <br>There are experiments with hierarchical self assembly of structural DNA nanotechnology that have clearly demonstrated this <br>{{wikitodo|add reference}}.</small>
 +
* [[Molecular biology]]: One main far term target in molecular biology is a complete reverse engineering of natures nanomachinery for grand improvements in medicine. This is strongly unrelated to the far term target of APM. A particular example where the interests diverge: The very difficult folding problem for natural proteins versus the relatively simple de-novo-protein-design for artificial nanomachinery.
 +
* [[Synthetic biology]]: The far term targets of this research is the recreation and expansion of the nanomachinery of life. It goes pretty much 180° in the opposite direction of APM. <br><small>(Not to say that this research is not valuable in its own right. Its far term targets are just maximally unrelated to R&D efforts targeting APM)</small>
  
== Tour by map ==
+
Main article: "[[Brownian technology path]]"
  
There is something like a universal all encompassing [[possibility space|timeless landscape of technology]] (an abstract concept).
+
== What APM actually is ==
This landscape turns out to be very well suited to give a general overview over the various aspects of the field of atomically precise manufacturing.
+
  
[[File:Possibility_space_overview_-_original_size.svg|750px|thumb|center|Main article: "[[possibility space]]"; (1) R&D with (1a) untargeted research discovering more surprising pathway entry points (1b) targeted engineering marching forward on identified pathway entry points; (2) [[Pathways to advanced APM systems|path]], especially [[incremental path]] with three technology levels ([[Technology level I|2a]],[[Technology level II|2b]],[[Technology level III|2c]]); (3) target backward [[preparatory design]] (4) far off target: [[Nanofactory|gem-gum factory]]; (5a) [[gemstone based metamaterial]]s, (5b) [[Products of advanced atomically precise manufacturing|advanced products]] and (5c) more abstract consequences ([[Opportunities|good]] and [[Dangers|bad]])  hard to quantify and blurring into speculation -- (green areas) [[Exploratory engineering]]. (dark green) known today.]]
+
APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.
  
The landscape is about the range of fundamentally possible of technologies.
+
== Why should the far term target of APM (gemstone metamaterial technology) even work? ==
The range of these possible technologies is determined by physical law.
+
Under the assumption that physical laws do not change in time or space, the fundamental potential of technology too does not change in time or space. (Assuming unchanging physical law should obviously make sense for all practical purposes. Side notes of little relevance on that [[Reliability of physical laws|here]]).
+
  
Uncovering the fundamental potential of technology is thus not about predicting the future as one might suspect.
+
Because there is exceptional theoretical and good experimental evidence that it will: <br>
It's about uncovering truths that where already there since the "dawn of time" (and which hold everywhere).
+
For details see: [[Why gemstone metamaterial technology should work in brief]] <br>
 +
[[Gemstone metamaterial technology]] is the far term target of APM. More on that further down.
  
Specifically in the field of atomically precise manufacturing there is the unusual situation that some things that cannot yet be built or directly tested, can already be understood and simulated. Sometimes more reliably, sometimes less. Some major ones of those areas of investigation in the field of APM that feature this unusual situation are depicted as green "islands" in the landscape above.
+
For theoretical evidence (including some not covered in [[Nanosystems]]) see:
When isolating a strategy to maximize the reliability of such predictions one ends up with the methodology of [[exploratory engineering]].
+
* [[Macroscale style machinery at the nanoscale]]
 +
* [[How macroscale style machinery at the nanoscale outperforms its native scale]]
  
= Atomically Precise Manufacturing (APM) – near term & far term =
+
= APM in the near term and APM in the far term =  
  
== What APM is absolutely not ==
+
See main article: [[Near term and far term]].
  
While early APM may have overlap with these areas the far term goals are completely and utterly different.
+
== The (two) killer features of APM ==
* [[soft nanomachines]], [[molecular biology]], [[synthetic biology]] – Main article: "[[Brownian technology path]]"
+
  
== What APM actually is ==
+
'''See main page: [[The killer features of APM]]'''<br>
 +
Basically two things:
 +
* [[Digital control over matter]]
 +
* Emulation of complex (mechanical) properties from simple base materials: <br>[[mechanical metamaterial]]s & [[metamaterial]]s
  
APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.
+
== Nearer term targets ==
  
== Today and near term ==
+
On this wiki "atomically precise manufacturing" (or APM) will be interpreted in a wider sense. <br>
 +
Including both earlier precursor systems in the near term and the targeted later systems in the far term. <br>
 +
Specifically this may include:
 +
* [[Modular molecular composite nanosystems]] (MMCNs)
 +
* [[Foldamer printer]]s
 +
* Technology level: [[Technology level 0|0]], [[Technology level I|I]], (and maybe [[Technology level II|II]])
 +
* [[Early diamondoid nanosystem pixel (direct path)]]
  
'''Pick and place assembly of single atoms (or molecule fragments) is not at all a necessity for early forms of APM.'''<br>
+
== Far term target ==
In fact pick and place assembly is not needed at all for early forms of APM.
+
[[Thermally driven assembly|Assembly driven by the "vigorous" thermal motion at the nanoscale]] (slightly misleading tech-term: "self assembly") can do the job.
+
  
* This [[Thermally driven assembly]] is not present in macroscale manufacturing. Therefore it is not present in our (knowledge and) intuition (unless we study the nanoscale in detail). Advanced APM is sometimes claimed to be impossible due to the effects of thermal motion. Which is clearly wrong for all the points that have been pointed at ([[mechanosynthesis]], [[superlubrication|friction]], ...). What is the case is that some proponents of advanced APM may lack knowledge (and intuition) regarding thermal motion.
+
[[File:ProductiveNanosystemsMainScreencap.jpg|400px|thumb|right|Screen capture from the concept animation video: "[[Productive Nanosystems From molecules to superproducts]]" showing several proposed processing stages compressed into just one single image. This is conceptual.]]
* [[Thermally driven assembly]] puts thing together in faulty configurations quite often (high error rates). But its just enough such that one can start climbing the "[[incremental path|stiffness ladder]]" introducing more and more restrained and forced motion leading to advanced APM.
+
[[File:NanofactoryChipTheVision.jpg|400px|thumb|right|From atoms/molecules to products via [[convergent assembly]].]]  
 +
On this wiki the shorthand '''"gem-gum technology"''' (or "gem based APM") will be used to refer to the '''far term target'''.<br>
  
It may come somewhat unexpected but '''in early APM systems there is no need for the atoms to stay in place.'''
+
=== Development target more concretely ===
No, that does not contradict the introduction earlier.
+
The atoms still need to keep their nearest neighbors they are strongly bonded to.
+
What needs to be preserved such that is counts as atomically precise ([[topological atomic precision|in the weak (topological) sense]]) is just "what links to what" (tech-term: "bond topology").
+
  
In the early atomically precise systems of today the atoms tend to be bonded together in polymer chains. The whole chains constantly deform since the (zig-zag going) bonds in these polymer chains can (and very much do) rotate and flex. Thereby atoms can be displaced much more than their own diameter. Polymer chains with (mutually puzzle piece like matching) "side groups" that cause these chains to [[Thermally driven folding|fold up]] into compact lumps (such chains are called: "[[Foldamer R&D|foldamers]]") restrict this unwanted freedom of motion far enough to give the folded lumps a ([[De-novo protein engineering|more]] or less) predictable shape. But the location of the individual atoms may (and usually will) still wiggle around way beyond the diameter of the individual atoms.
+
'''The development target are "[[gemstone metamaterial on-chip factories]]".''' <br>
 +
The associated technology (what they are made out of and what they make) is "[[gemstone metamaterial technology]]". <br>
  
In some sense even chemistry (the deterministic parts of it) could be counted as the earliest form of APM.
+
=== Visualization of target ===
(This is very much excluding macromolecular polymer chemistry with statistical cross-linking.)
+
Important to note is that a major aspect of APM is that it specifically focuses on scaling up APM capabilities to bigger sizes.
+
Chemistry is on the very bottom and does not scale up well.
+
  
----
+
The best visualization of the proposed internal workings of a [[gem-gum factory]] in existence so far is<br>
 +
'''the concept animation video: [[Productive Nanosystems From molecules to superproducts]]'''<br>
 +
This features concrete example geometries.
  
In advanced atomically precise systems the atomically precise lumps are no longer made from folded up chains.
+
=== Block diagram ===
Instead of chains the chemical bonds form tight meshes. Tiny [[crystolecule|crystals with molecule character]].
+
This tight mesh of bonds prevents the bonds from rotating, excessive stretching and bending. It is [[stiffness|stiff]].
+
Here the location of the individual atoms can finally be restrained below the diameter of the individual atoms.
+
This is atomically precise ([[positional atomic precision|in the strong (positional) sense]]).
+
It allows [[mechanosynthesis| advanced force applying mechanosynthesis]].
+
  
----
+
Not specifying any concrete geometries a good overview over the necessary innards of a [[gem-gum factory]] can be found here:<br>
 +
'''[[Block diagram of a gem-gum on-chip factory]]'''
  
In summary: While APM systems must always be [[topological atomic precision|topologically precise]] [[positional atomic precision|positional precision]] is reserved for the more advanced forms of APM.
+
=== Choice of terminology ===
  
== Towards the far term ==
+
<small>''A technically accurate but unwieldy long description of the far term target of APM combining all of the above would be:</small> <br>
 +
<small>"atomically resolving gemstone based metamaterial manufacturing and technology"''</small>
  
There are '''two core ideas''' that determine what the R&D direction from early forms of APM to advanced forms of APM actually is.
+
Splitting it up gives two still quite precise descriptions of the far term target:  
This wiki will refer to those two ideas with the shorthand '''"gem-gum"'''.
+
* "gemstone based atomically precise manufacturing and technology"
This shorthand has been chosen since:
+
* "gemstone metamaterial technology" <br>
* it is catchy, in other words easy to spell and remember. <br>which "high throughput atomically precise manufacturing level technology" is not. (Source of that ridiculously long term: "Radical Abundance")
+
* it is highly specific and thus hard to annex by other concepts. It very clearly points to the far term goal <br>which "high throughput atomically precise manufacturing level technology" does not.
+
  
=== Gem – Gemstone – Stiffness ===
+
Shortening these to make much more usable terminology:
 +
* '''"gem based APM"'''
 +
* '''"gem-gum-tec"'''
 +
'''Use one of these!'''
  
Core idea #1 [[gemstone like compound|Gem]]: Short for '''high stiffness''' gemstone like compound.
+
Why "gem-gum" you ask? See: [[Defining traits of gem-gum-tec]]. In brief:
 +
* The '''"gem"''' stands stands for gemstone being the base material
 +
* The '''"gum"''' stands for rubber like flexibility – one of many possible properties that the gemstone base material attains by nano-structuring it into an advanced [[mechanical metamaterial]]. See: [[Elasticity emulation]]
  
Gradual increase of the [[stiffness]] of the materials we build with is the ultimate key to raise our level of control over matter (the key to advanced [[mechanosynthesis]]). The term "gem" (short for gemstone - obviously) points exclusively to the ideal [[gemstone like compound|stiff base materials of the far term target technology]]. This explicitly excludes early stage atomically precise manufacturing such as "[[structural DNA nanotechnology]]"
+
=== Microcomponent recomposers ===
  
=== Gem-Gum – Gum/Rubber made out of gemstone ===
+
[[Microcomponent recomposer]]s also belong to [[gemstone metamaterial technology]]. <br>
 +
These would be kind of deliberately incomplete [[gemstone metamaterial on-chip factories]]. <br>
 +
They will only recompose [[microcomponents]] which already have been pre-produced. <br>
 +
Not produce new ones from primary resources,
  
[[File:Space_of_possible_materials.svg|250px|thumb|right|Gemstone based mechanical metamaterials (here called "gem-gum") are a clear (and relatively simple) far term goal of APM. "Gem-gum" will extend the material properties that are available to us today to material properties that currently are deemed exotic or even contradictory and impossible. In the process of getting towards the far term goal of "gem-gum" even further reaching capabilities are likely to become accessible that can provide material properties even beyond those that "gem-gum" can provide. One of example would be: Direct mechanosynthesis of digestible food molecules. But these materials are even further out and even harder to predict.]]
+
Benefits of microcomponent recomposers are  
 +
* massively increased speed
 +
* significantly increased energy efficiency, and perhaps
 +
* some advantages regarding [[Safety towards and with gem based APM|security]].
  
Core idea #2 [[Gemstone based metamaterial|Gem-Gum]]:
+
=== Scope of "gemstone metamaterial technology" (or "gem-gum-tech" for short) ===
Short for '''gemstone based mechanical metamaterials''' with seemingly contradicting and impossible properties.
+
  
Even when one can mechanosynthesize almost nothing (just a few simple base materials) one can make almost anything by mechanical emulation. This is the "magic" of mechanical metamaterials. "Gum" is just a shorthand for one concrete example of such a metamaterial that rhymes on "Gem" which makes memorization a lot easier. Also it's a concrete example that's rather un-intuitive. Rubber made from gemstone.
+
On this wiki to "[[gemstone metamaterial technology]]" is sometimes referred to with:
This could peak interest (click-bait effect).
+
* technology level [[Technology level III|III]] – (gemstones that can only be synthesized in under [[practically perfect vacuum]]) <br>
 +
* technology level [[Technology level II|II]] – (solution phase synthesizable gemstones) may or may not be included.
  
Even with very minimal high stiffness nano-manufacturing capabilities (just one single high performance compound like e.g. diamond and nothing else) the amount of materials creatable will far exceed what is available today. {{todo|add visualization}}
+
= Safety towards and with gem based APM =
  
=== Limits to the ambitions ===
+
Now with having established <br>
 +
– what APM in general is supposed to mean and <br>
 +
– what far term target gem based APM is supposed to mean and <br>
 +
– with having presented arguments for it's feasibility (non necessarily meaning it'll be here anytime soon though) <br>
 +
It's kind of mandatory to talk a bit about safety.
  
APM is sometimes said to have the goal to:
+
Safety in a world with AP manufacturing and technology <br>
* ''Create most arrangements/patterns of atoms that are permitted by and consistent with physical law.''
+
is a lot about about [[governance and related software technology]] rather than physical technology. <br>
But that is even beyond the far term goal of [[nanofactory|gem-gum factories]].
+
There are some physical technology aspects too, yes, but these alone can't suffice.
  
Due to the strong "pessimism" (more formally "conservativeness") of [[exploratory engineering]] '''the [[nanofactory|reliably predictable part of future tecnology]] is just the innermost naked core of what will really emerge'''. Part of this "innermost naked core" are just a few base materials.
+
Note that:
But these few alone are, when made into (mechanical) metamaterials, already sufficient for the emulation of an overwhelming plethora of material properties that goes far beyond what we have today (2017).
+
* Discussion of runaway replication accidents is massively over-represented. And risk are typically overestimated.
 +
* Discussion of specialized weaponry is massively under-represented. And risk are typically underestimated.
 +
* '''Early misdirected overregulation can increase risk rather than mitigating it.'''
  
Much of the stuff that cannot yet be expected from the [[incremental path]] (including fundamentally unpredictable scientific discoveries) may remain in the final systems. But there also often will be [[Consistent design for external limiting factors|strong reasons to ditch earlier technology]] to not unnecessarily limit the range of situations in which the [[Products of advanced atomically precise manufacturing|advanced products]] will be usable in.
+
See main page: [[Safety towards and with gem based APM]] <br>
 +
Related pages: [[Self limitation for safety]], [[dangers]] & [[opportunities]]
 +
 
 +
= Take a tour =
 +
 
 +
Take a guided tour: <small>(Work in progress. Please excuse the links dangling into construction sites.)</small><br>
 +
* [[Tour by topic]]
 +
* [[Tour by map]]
 +
Or take a shortcut directly from here:
 +
 
 +
== What, Why, How, When ==
 +
 
 +
{|style="background-color:#ccccff;" cellpadding="5"
 +
|DEFINITION:
 +
|'''[[About APM]]'''
 +
|'''What''' APM is not and what it is.
 +
|-
 +
|MOTIVATION:
 +
|[[Reasons for APM]]
 +
| '''Why''' we need APM.
 +
|-
 +
|OBSTACLES:
 +
|[[conceptual challenges]] and [[institutional challenges]]
 +
| '''What''' impedes progress towards APM.
 +
|-
 +
|APPROACH:
 +
|[[Pathways to advanced APM systems|Pathways to advanced APM]]
 +
|'''How''' we get to advanced APM.
 +
|-
 +
|PROGRESSION:
 +
|[[Time till advanced APM]]
 +
|'''When''' we will get to advanced APM?
 +
|}
 +
----
 +
Also there are:
 +
* the '''[[goals of this wiki]]'''
 +
* this wiki's [[APM:About|impressum]]
 +
* related 3D printing projects: [[The DAPMAT demo project|educational illustration of various principles]]; [[ReChain project]]; [[RepRec project]]
 +
 
 +
Misc:
 +
* '''[[General Introduction to atomically precise manufacturing|Intro:]]''' Here is an old version of the landing page. Containing a detailed introduction to atomically precise manufacturing as a whole. (warning, lots of text)
 +
 
 +
= What needs to be done to make it happen =
 +
 
 +
'''See: [[Where to start targeted development]] for some suggestions.'''
 +
 
 +
= Exciting super far term visions =
 +
 
 +
See: '''[[Exciting super far term visions for gemstone metamaterial technology]]'''
  
 
= Links =
 
= Links =
 +
 +
=== Technical feasibility analysis ===
 +
 +
There is (after 29 years and counting) still only one focused and aggregated technical feasibility analysis of advanced APM (referring to gemstone metamaterial APM here) available as of the day of writing (2020-11-08).
 +
This is Eric Drexlers 1991 MIT Dissertation and the book "[[Nanosystems]]" which basically is a cleaned up version of the dissertation.
 +
 +
* via MIT libraries: [https://dspace.mit.edu/handle/1721.1/27999]
 +
* via academia.edu [https://www.academia.edu/7789003/Drexler_MIT_dissertation]
 +
* via internet archive of the authors former homepage: [https://web.archive.org/web/20160409095424/http://e-drexler.com/d/09/00/Drexler_MIT_dissertation.pdf]
 +
 +
This analysis is still the most important technical work in this field alone simply because it is still the only one. If the reader is not afraid of a bit more technical reading and want's to get well past a mere superficial understanding then this is a highly suggested read. Note that the topics tackled in the analysis are of timeless nature so the analysis hasn't gone outdated in these past 29 (and counting) years.
  
 
== Webpages ==
 
== Webpages ==
Line 131: Line 209:
 
* [http://www.sci-nanotech.com Forum]
 
* [http://www.sci-nanotech.com Forum]
 
* [http://www.foresight.org/ Foresight Institute: Nanotechnology]
 
* [http://www.foresight.org/ Foresight Institute: Nanotechnology]
 +
* [http://www.imm.org/ Institute for Molecular Manufacturing]
 +
* [http://www.molecularassembler.com/Nanofactory/ Nanofactory Collaboration]
 
* [http://www.oxfordmartin.ox.ac.uk/downloads/academic/201310Nano_Solutions.pdf Disquisition 2013 "Nano-solutions for the 21st century: Unleashing the fourth technological revolution"]
 
* [http://www.oxfordmartin.ox.ac.uk/downloads/academic/201310Nano_Solutions.pdf Disquisition 2013 "Nano-solutions for the 21st century: Unleashing the fourth technological revolution"]
 
* [http://www.zyvexlabs.com/Publications2010/WhitePapers/APM_Q_and_A.html Zyvex's definition of APM]
 
* [http://www.zyvexlabs.com/Publications2010/WhitePapers/APM_Q_and_A.html Zyvex's definition of APM]
 
* [[Other sites]]
 
* [[Other sites]]
 
+
·
 
== Brief introduction videos ==
 
== Brief introduction videos ==
 
+
* '''[[Productive Nanosystems From molecules to superproducts]]''' ~ A concept video visualizing the results found in the book [[Nanosystems]]
 
* [https://vimeo.com/186020435 Nanotube TV (von Nanotechnology Industries)] (2016-10)
 
* [https://vimeo.com/186020435 Nanotube TV (von Nanotechnology Industries)] (2016-10)
 
* [https://youtu.be/lvUFNp-TWbg?t=23m5s Nanotechnology: the big picture with Dr Eric Drexler and Dr Sonia Trigueros] (2016-01-28)
 
* [https://youtu.be/lvUFNp-TWbg?t=23m5s Nanotechnology: the big picture with Dr Eric Drexler and Dr Sonia Trigueros] (2016-01-28)
Line 142: Line 222:
 
* Chris Phoenix on Molecular Manufacturing (2014-09?) [https://www.youtube.com/watch?v=-tCa0MxtgFI (alternative 2)][http://tsf.njit.edu/2006/spring/phoenix.php (alternative1)] [https://www.youtube.com/watch?v=1eEzD_FVCmk Nanotechnologist (older dead link)]
 
* Chris Phoenix on Molecular Manufacturing (2014-09?) [https://www.youtube.com/watch?v=-tCa0MxtgFI (alternative 2)][http://tsf.njit.edu/2006/spring/phoenix.php (alternative1)] [https://www.youtube.com/watch?v=1eEzD_FVCmk Nanotechnologist (older dead link)]
 
* [https://www.youtube.com/watch?v=zG-CQ-ZKh80 Dr Eric Drexler - Remaking the 21st Century] (2014-01-23) '''long! 1h 14min'''
 
* [https://www.youtube.com/watch?v=zG-CQ-ZKh80 Dr Eric Drexler - Remaking the 21st Century] (2014-01-23) '''long! 1h 14min'''
* [http://www.youtube.com/watch?v=1bw6Zi17DBI Video of oxford talk] (2014-01-22): Eric K. Drexler speaks about his new book "Radical Abundance"
+
* [http://www.youtube.com/watch?v=1bw6Zi17DBI Video of oxford talk] (2014-01-22): Eric K. Drexler speaks about his new book "[[Radical Abundance]]"
 
* [https://vimeo.com/62119582 John Randall: "Atomically Precise Manufacturing" at Foresight Technical Conference 2013] <br> '''[https://vimeo.com/album/2331977 Illuminating Atomic Precision: Foresight Technical Conference January 2013]'''
 
* [https://vimeo.com/62119582 John Randall: "Atomically Precise Manufacturing" at Foresight Technical Conference 2013] <br> '''[https://vimeo.com/album/2331977 Illuminating Atomic Precision: Foresight Technical Conference January 2013]'''
 
* [http://vimeo.com/12768578 Fully Printed] (2010-06) - Note: '''[[Diamondoid]] nanofactories will look and work differently and [[misconceptions#no food|won't produce food]]'''.
 
* [http://vimeo.com/12768578 Fully Printed] (2010-06) - Note: '''[[Diamondoid]] nanofactories will look and work differently and [[misconceptions#no food|won't produce food]]'''.
Line 153: Line 233:
 
----
 
----
 
* [https://www.youtube.com/watch?v=4eRCygdW--c#t=13 Richard Feynman Nanotechnology Lecture - Tiny Machines] (1984-10-25)
 
* [https://www.youtube.com/watch?v=4eRCygdW--c#t=13 Richard Feynman Nanotechnology Lecture - Tiny Machines] (1984-10-25)
 +
·
 +
== Related ==
  
 +
* [[Gem-gum on-chip factories]]
 +
* [[Gemstone metamaterial technology]]
 +
* [[Terminology]], [[APM related terms]]
 +
·
 +
== Wikipedia pages ==
 +
 +
* [https://en.wikipedia.org/wiki/Atomically_precise_manufacturing Atomically precise manufacturing]
 +
* [https://en.wikipedia.org/wiki/Productive_nanosystems Productive nanosystems]
 +
* [https://en.wikipedia.org/wiki/Molecular_nanotechnology Molecular nanotechnology]
 +
* [https://en.wikipedia.org/wiki/Molecular_assembler#Nanofactories Molecular assembler -> Nanofactories]
 +
* [https://en.wikipedia.org/wiki/Mechanosynthesis#Diamond_mechanosynthesis Mechanosynthesis -> Diamond mechanosynthesis]
 +
·
 
== Locally hosted files ==
 
== Locally hosted files ==
  
*  <span style="color:#FF0000">'''Slides from [//cfp.linuxwochen.at/de/LWW14/public/events/115 the talk] the [[APM:About|apm-wiki site admin]] gave at the austrian "linuxwochen" event: [http://www.apm.bplaced.net/public/APM-Talk-12-2slidesproseite_de.pdf slides-pdf-file]'''</span>
+
*  <span style="color:#FF0000">'''Slides from [//cfp.linuxwochen.at/de/LWW14/public/events/115 the talk] the [[APM:About|apm-wiki site admin]] gave at the austrian "linuxwochen" event: [http://apm.bplaced.net/public/APM-Talk-12-2slidesproseite_de.pdf slides-pdf-file]'''</span>
 +
 
 +
== Other languages (ATM just an old minimal into in German) ==
 +
 
 +
{| border="0"
 +
|style="background:#FFCCCC; color:#000000; width: 80%; text-align:center;" |  '''Language: en | [[Mechandense's Wiki über atomar präzise Herstellung| Sprache: de]]'''
 +
|}
  
 
[[Category:Contents]]
 
[[Category:Contents]]
 
[[Category:General]]
 
[[Category:General]]

Latest revision as of 17:03, 11 February 2024

https://www.patreon.com/mechadense

Support this wiki via Patreon. 🙏
Pages with recent activity documented on page: Logs.
For other possible ways to support see page: Support

The far term target

A personal desktop gem-gum factory fabblet with dynamically deployed protective hood.

The personal gem gum factory is:

  • Your personal device that can push out virtually every thing* of your daily use.
    (* at least every inedible thing)

The personal gem gum factory makes:

  • Your products that are as cheap as the abundant mining-free raw materials that it processes.
  • Your products that are far superior to today's best and ridiculously expensive high tech products.
  • Your products potentially in an environmentally friendly effluent free way
    (also advanced recycling is faster than producing from scratch)
Graphical Infosheets: [1] (work in progress)

The existence of a personal fabricator will have profound impact human society on a global scale.
The basis for such a personal fabricator - the atomically precise manufacturing (APM) technology - is beginning to be figured out today.

Dodge the trapdoors

Gear-train (cut open). Author: Mark Sims – Don't be fooled by the stroboscopic illusion in animations of diamondoid molecular machine elements. The proposed average operation speeds in gem-gum factories are quite slow actually. Nowhere near the speed of sound.

First off: Let's get the major obstacles out of the way.

  • There are no "nanobots" here!
    Check the info pages "Prime distractions" and "No nanobots".
  • Macroscale style machinery at the nanoscale?! (machinery like this)
    It's well known, that there are several severe concerns regarding this idea. And for very good reasons.
    Less known is, that all of those major concerns have been considered in quite some detail with rather surprising results.
    Check out the main article discussing the concerns here:
    Macroscale style machinery at the nanoscale

  • Yes, lifes nanomachinery (molecular biology) does NOT constitute a feasibility proof of the targeted kind of technology.
    But it does not constitute an infeasibility proof either. For details see: "Nature does it differently".
    What does provide the very high confidence in feasibility is low level exploratory engineering applied without compromises.
    Additionally there are successful experimental demonstrations of manipulation of single atoms. Repeatable, precise, with strong covalent bonds, and at decently high temperatures ("decently high" meaning: no liquid helium involved). Plus there's a clear path how to speed this up to the necessary operations frequencies. Namely by scaling down the placement mechanisms.
  • No, making every structure permitted by physical law is NOT the goal here. Quite the contrary actually. What we want is to cheat and make it seem as if we could. It's even encoded in the name that this wiki uses to refer to the far term target. Specifically in the "gem" and "gum" parts in "gem-gum-tec". For details check out: "The defining traits of gem-gum-tec" and "Every structure permissible by physical law".
  • No, using soft nanomachinery to bootstrap stiff nanomachinery is not an abandonment of principles. It just might be a more practical approach to get to the target faster. See: "Pathways".

  • No, nanoscale physics and quantum mechanics is not inherently incomprehensible.
    It is very possible, satisfying, and useful to develop an intuitive feel for these things.

What APM is not

Source: Animation video: "The Inner Life of the Cell"Recreating the molecular machinery of life is NOT the far term goal of atomically precise manufacturing. It is one goal of synthetic biology which goes in a very different direction. The molecular machinery of life though is a valuable resource for (1) bootstrapping towards gem-gum systems and (2) learning lower level concepts like e.g. the coordination geometries in active sites of enzymes).

While early APM may have overlap with these areas the far term goals are very different.

  • Soft nanomachines: APM is all about targeting stiffness / stiff nanomachines / "hard" nanomachines.
    Nonetheless soft nanomachines can be very useful in the bootstrapping process.
    Note though, that self assembly (useful in bootstrapping) does not essentially rely on a lack of stiffness aka softness.
    There are experiments with hierarchical self assembly of structural DNA nanotechnology that have clearly demonstrated this
    (wiki-TODO: add reference).
  • Molecular biology: One main far term target in molecular biology is a complete reverse engineering of natures nanomachinery for grand improvements in medicine. This is strongly unrelated to the far term target of APM. A particular example where the interests diverge: The very difficult folding problem for natural proteins versus the relatively simple de-novo-protein-design for artificial nanomachinery.
  • Synthetic biology: The far term targets of this research is the recreation and expansion of the nanomachinery of life. It goes pretty much 180° in the opposite direction of APM.
    (Not to say that this research is not valuable in its own right. Its far term targets are just maximally unrelated to R&D efforts targeting APM)

Main article: "Brownian technology path"

What APM actually is

APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.

Why should the far term target of APM (gemstone metamaterial technology) even work?

Because there is exceptional theoretical and good experimental evidence that it will:
For details see: Why gemstone metamaterial technology should work in brief
Gemstone metamaterial technology is the far term target of APM. More on that further down.

For theoretical evidence (including some not covered in Nanosystems) see:

APM in the near term and APM in the far term

See main article: Near term and far term.

The (two) killer features of APM

See main page: The killer features of APM
Basically two things:

Nearer term targets

On this wiki "atomically precise manufacturing" (or APM) will be interpreted in a wider sense.
Including both earlier precursor systems in the near term and the targeted later systems in the far term.
Specifically this may include:

Far term target

Screen capture from the concept animation video: "Productive Nanosystems From molecules to superproducts" showing several proposed processing stages compressed into just one single image. This is conceptual.
From atoms/molecules to products via convergent assembly.

On this wiki the shorthand "gem-gum technology" (or "gem based APM") will be used to refer to the far term target.

Development target more concretely

The development target are "gemstone metamaterial on-chip factories".
The associated technology (what they are made out of and what they make) is "gemstone metamaterial technology".

Visualization of target

The best visualization of the proposed internal workings of a gem-gum factory in existence so far is
the concept animation video: Productive Nanosystems From molecules to superproducts
This features concrete example geometries.

Block diagram

Not specifying any concrete geometries a good overview over the necessary innards of a gem-gum factory can be found here:
Block diagram of a gem-gum on-chip factory

Choice of terminology

A technically accurate but unwieldy long description of the far term target of APM combining all of the above would be:
"atomically resolving gemstone based metamaterial manufacturing and technology"

Splitting it up gives two still quite precise descriptions of the far term target:

  • "gemstone based atomically precise manufacturing and technology"
  • "gemstone metamaterial technology"

Shortening these to make much more usable terminology:

  • "gem based APM"
  • "gem-gum-tec"

Use one of these!

Why "gem-gum" you ask? See: Defining traits of gem-gum-tec. In brief:

  • The "gem" stands stands for gemstone being the base material
  • The "gum" stands for rubber like flexibility – one of many possible properties that the gemstone base material attains by nano-structuring it into an advanced mechanical metamaterial. See: Elasticity emulation

Microcomponent recomposers

Microcomponent recomposers also belong to gemstone metamaterial technology.
These would be kind of deliberately incomplete gemstone metamaterial on-chip factories.
They will only recompose microcomponents which already have been pre-produced.
Not produce new ones from primary resources,

Benefits of microcomponent recomposers are

  • massively increased speed
  • significantly increased energy efficiency, and perhaps
  • some advantages regarding security.

Scope of "gemstone metamaterial technology" (or "gem-gum-tech" for short)

On this wiki to "gemstone metamaterial technology" is sometimes referred to with:

  • technology level III – (gemstones that can only be synthesized in under practically perfect vacuum)
  • technology level II – (solution phase synthesizable gemstones) may or may not be included.

Safety towards and with gem based APM

Now with having established
– what APM in general is supposed to mean and
– what far term target gem based APM is supposed to mean and
– with having presented arguments for it's feasibility (non necessarily meaning it'll be here anytime soon though)
It's kind of mandatory to talk a bit about safety.

Safety in a world with AP manufacturing and technology
is a lot about about governance and related software technology rather than physical technology.
There are some physical technology aspects too, yes, but these alone can't suffice.

Note that:

  • Discussion of runaway replication accidents is massively over-represented. And risk are typically overestimated.
  • Discussion of specialized weaponry is massively under-represented. And risk are typically underestimated.
  • Early misdirected overregulation can increase risk rather than mitigating it.

See main page: Safety towards and with gem based APM
Related pages: Self limitation for safety, dangers & opportunities

Take a tour

Take a guided tour: (Work in progress. Please excuse the links dangling into construction sites.)

Or take a shortcut directly from here:

What, Why, How, When

DEFINITION: About APM What APM is not and what it is.
MOTIVATION: Reasons for APM Why we need APM.
OBSTACLES: conceptual challenges and institutional challenges What impedes progress towards APM.
APPROACH: Pathways to advanced APM How we get to advanced APM.
PROGRESSION: Time till advanced APM When we will get to advanced APM?

Also there are:

Misc:

  • Intro: Here is an old version of the landing page. Containing a detailed introduction to atomically precise manufacturing as a whole. (warning, lots of text)

What needs to be done to make it happen

See: Where to start targeted development for some suggestions.

Exciting super far term visions

See: Exciting super far term visions for gemstone metamaterial technology

Links

Technical feasibility analysis

There is (after 29 years and counting) still only one focused and aggregated technical feasibility analysis of advanced APM (referring to gemstone metamaterial APM here) available as of the day of writing (2020-11-08). This is Eric Drexlers 1991 MIT Dissertation and the book "Nanosystems" which basically is a cleaned up version of the dissertation.

  • via MIT libraries: [2]
  • via academia.edu [3]
  • via internet archive of the authors former homepage: [4]

This analysis is still the most important technical work in this field alone simply because it is still the only one. If the reader is not afraid of a bit more technical reading and want's to get well past a mere superficial understanding then this is a highly suggested read. Note that the topics tackled in the analysis are of timeless nature so the analysis hasn't gone outdated in these past 29 (and counting) years.

Webpages

·

Brief introduction videos




·

Related

·

Wikipedia pages

·

Locally hosted files

Other languages (ATM just an old minimal into in German)

Language: en | Sprache: de