Mechadense's Wiki about Atomically Precise Manufacturing

From apm
(Redirected from Main Page)
Jump to: navigation, search
Language: en | Sprache: de
https://www.patreon.com/mechadense

Support this wiki via Patreon.

The far term target

A personal desktop gem-gum factory that is in the process of extruding out some product. (Screencap collage of from concept video "Productive nanosystems")

The personal gem gum factory is:

  • Your personal device that can push out virtually every thing* of your daily use.
    (* at least every inedible thing)

The personal gem gum factory makes:

  • Your products that are as cheap as the abundant mining-free raw materials that it processes.
  • Your products that are far superior to today's best and ridiculously expensive high tech products.
  • Your products potentially in an environmentally friendly effluent free way
    (also advanced recycling is faster than producing from scratch)
Graphical Infosheets: [1] (work in progress)

The existence of a personal fabricator will have profound impact human society on a global scale.
The basis for such a personal fabricator - the atomically precise manufacturing (APM) technology - is beginning to be figured out today.

Dodge the trapdoors

Differential gear (cut open). Author: Mark Sims – Don't be fooled by the stroboscopic illusion in animations of diamondoid molecular machine elements. The proposed average operation speeds in gem-gum factories are quite slow actually. Nowhere near the speed of sound.

First off: Let's get the major obstacles out of the way.

  • There are no "nanobots" here!
    Check the info pages "Prime distractions" and "No nanobots".
  • Macroscale style machinery at the nanoscale?! (machinery like this)
    It's well known, that there are several severe concerns regarding this idea. And for very good reasons.
    Less known is, that all of those major concerns have been considered in quite some detail with rather surprising results.
    Check out the main article discussing the concerns here:
    Macroscale style machinery at the nanoscale

  • Yes, lifes nanomachinery (molecular biology) does NOT constitute a feasibility proof of the targeted kind of technology.
    But it does not constitute an infeasibility proof either. For details see: "Nature does it differently".
    What does provide the very high confidence in feasibility is low level exploratory engineering applied without compromises.
    Additionally there are successful experimental demonstrations of manipulation of single atoms. Repeatable, precise, with strong covalent bonds, and at decently high temperatures ("decently high" meaning: no liquid helium involved). Plus there's a clear path how to speed this up to the necessary operations frequencies. Namely by scaling down the placement mechanisms.
  • No, making every structure permitted by physical law is NOT the goal here. Quite the contrary actually. What we want is to cheat and make it seem as if we could. It's even encoded in the name that this wiki uses to refer to the far term target. Specifically in the "gem" and "gum" parts in "gem-gum-tec". For details check out: "The defining traits of gem-gum-tec" and "Every structure permissible by physical law".
  • No, using soft nanomachinery to bootstrap stiff nanomachinery is not an abandonment of principles. It just might be a more practical approach to get to the target faster. See: "Pathways".

  • No, nanoscale physics and quantum mechanics is not inherently incomprehensible.
    It is very possible, satisfying, and useful to develop an intuitive feel for these things.

What APM is not

Source: Animation video: "The Inner Life of the Cell"Recreating the molecular machinery of life is NOT the far term goal of atomically precise manufacturing. It is one goal of synthetic biology which goes in a very different direction. The molecular machinery of life though is a valuable resource for (1) bootstrapping towards gem-gum systems and (2) learning lower level concepts like e.g. the coordination geometries in active sites of enzymes).

While early APM may have overlap with these areas the far term goals are very different.

  • Soft nanomachines: APM is all about targeting stiffness / stiff nanomachines / "hard" nanomachines.
    Nonetheless soft nanomachines can be very useful in the bootstrapping process.
    Note though, that self assembly (useful in bootstrapping) does not essentially rely on a lack of stiffness aka softness.
    There are experiments with hierarchical self assembly of structural DNA nanotechnology that have clearly demonstrated this
    (wiki-TODO: add reference).
  • Molecular biology: One main far term target in molecular biology is a complete reverse engineering of natures nanomachinery for grand improvements in medicine. This is strongly unrelated to the far term target of APM. A particular example where the interests diverge: The very difficult folding problem for natural proteins versus the relatively simple de-novo-protein-design for artificial nanomachinery.
  • Synthetic biology: The far term targets of this research is the recreation and expansion of the nanomachinery of life. It goes pretty much 180° in the opposite direction of APM.
    (Not to say that this research is not valuable in its own right. Its far term targets are just maximally unrelated to R&D efforts targeting APM)

Main article: "Brownian technology path"

What APM actually is

APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.

Why should the far term target of APM (gemstone metamaterial technology) even work?

Because there is exceptional theoretical and good experimental evidence that it will:
For details see: Why gemstone metamaterial technology should work in brief
Gemstone metamaterial technology is the far term target of APM. More on that further down.

APM in the near term and APM in the far term

See main article: Near term and far term.

Nearer term targets

On this wiki "atomically precise manufacturing" (or APM) will be interpreted in a wider sense.
Including both earlier precursor systems in the near term and the targeted later systems in the far term.
Specifically this may include:

Far term target

Screen capture from the concept animation video: "Productive Nanosystems From molecules to superproducts" showing several proposed processing stages compressed into just one single image. This is conceptual.

On this wiki the shorthand "gem-gum technology" will be used to refer to the far term target.


The development target are "gemstone metamaterial on-chip factories".
The associated technology (what they are made out of and what they make) is "gemstone metamaterial technology".


The best visualization of the proposed internal workings of a gem-gum factory in existence so far is
the concept animation video: Productive Nanosystems From molecules to superproducts
This features concrete example geometries.


Not specifying any concrete geometries a good overview over the necessary innards of a gem-gum factory can be found here:
Block diagram of a gem-gum on-chip factory

Choice of terminology

Why "gem-gum"? See: Defining traits of gem-gum-tec. In brief:

  • The "gem" stands stands for gemstone being the base material
  • The "gum" stands for rubber like flexibility – one of many possible properties that the gemstone base material attains by nanostructuring it into a mechanical metamaterial

A technically accurate but unwieldy long description of the far term target of APM would be:
"atomically resolving gemstone based metamaterial manufacturing and technology"

Microcomponent recomposers

Microcomponent recomposers also belong to gemstone metamaterial technology.
These would be kind of deliberately incomplete gemstone metamaterial on-chip factories because
they'd only recompose microcomponents which already have been pre-produced.

Scope of "gemstone metamaterial technology" (or "gem-gum-tech" for short)

On this wiki to "gemstone metamaterial technology" is sometimes referred to with:

  • technology level III – (gemstones that can only be synthesized in under practically perfect vacuum)
  • technology level II – (solution phase synthesizable gemstones) may or may not be included.

Take a tour

Take a guided tour: (Work in progress. Please excuse the links dangling into construction sites.)

Or take a shortcut directly from here:

What, Why, How, When

DEFINITION: About APM What APM is not and what it is.
MOTIVATION: Reasons for APM Why we need APM.
OBSTACLES: conceptual and institutional challenges What impedes progress towards APM.
APPROACH: Pathways to advanced APM How we get to advanced APM.
PROGRESSION: Time till advanced APM When we will get to advanced APM?

Also there are:

Misc:

  • Intro: Here is an old version of the landing page. Containing a detailed introduction to atomically precise manufacturing as a whole. (warning, lots of text)

What needs to be done to make it happen

See: Where to start targeted development for some suggestions.

Links

Technical feasibility analysis

There is (after 29 years and counting) still only one focused and aggregated technical feasibility analysis of advanced APM (referring to gemstone metamaterial APM here) available as of the day of writing (2020-11-08). This is Eric Drexlers 1991 MIT Dissertation and the book "Nanosystems" which basically is a cleaned up version of the dissertation.

  • via MIT libraries: [2]
  • via academia.edu [3]
  • via internet archive of the authors former homepage: [4]

This analysis is still the most important technical work in this field alone simply because it is still the only one. If the reader is not afraid of a bit more technical reading and want's to get well past a mere superficial understanding then this is a highly suggested read. Note that the topics tackled in the analysis are of timeless nature so the analysis hasn't gone outdated in these past 29 (and counting) years.

Webpages

Brief introduction videos




Wikipedia pages

Locally hosted files