Difference between revisions of "Direct path"

From apm
Jump to: navigation, search
(Transmission electron microscopy as atomically precise manipulation tool: added link to "atomic forge" video)
(External Links: repaired link to video)
Line 99: Line 99:
 
* [http://www.molecularassembler.com/Papers/PathDiamMolMfg.htm Pathway to Diamond-Based Molecular Manufacturing]
 
* [http://www.molecularassembler.com/Papers/PathDiamMolMfg.htm Pathway to Diamond-Based Molecular Manufacturing]
 
* [http://www.kurzweilai.net/how-to-make-a-nanodiamond-a-simple-tool-for-positional-diamond-mechanosynthesis-and-its-method-of-manufacture How To Make a Nanodiamond: A Simple Tool for Positional Diamond Mechanosynthesis, and its Method of Manufacture]
 
* [http://www.kurzweilai.net/how-to-make-a-nanodiamond-a-simple-tool-for-positional-diamond-mechanosynthesis-and-its-method-of-manufacture How To Make a Nanodiamond: A Simple Tool for Positional Diamond Mechanosynthesis, and its Method of Manufacture]
* '''Video:''' (2015-08-5/6) [https://www.youtube.com/watch?v=zD0F780x7PM Proposal For Atomically Precise Manufacturing by the US Department of Energy] <br> from the [https://energy.gov/eere/amo/downloads/integrated-nanosystems-atomically-precise-manufacturing-workshop-august-5-6-2015 INTEGRATED NANOSYSTEMS FOR ATOMICALLY PRECISE MANUFACTURING WORKSHOP – AUGUST 5-6, 2015]
+
* '''Video:''' (2015-08-5/6) [https://www.youtube.com/watch?v=pFOLYPzstRM&feature=share Proposal for Atomically Precise Manufacturing by the US Department of Energy] [https://www.youtube.com/watch?v=zD0F780x7PM (old dead link 1)]<br> from the [https://energy.gov/eere/amo/downloads/integrated-nanosystems-atomically-precise-manufacturing-workshop-august-5-6-2015 INTEGRATED NANOSYSTEMS FOR ATOMICALLY PRECISE MANUFACTURING WORKSHOP – AUGUST 5-6, 2015]
 
* '''Video:''' (2013-10-18) [https://www.youtube.com/watch?v=BLcYGmMDvLw John Randall - Atom by Atom Manufacturing Making atomically perfect materials and machines]
 
* '''Video:''' (2013-10-18) [https://www.youtube.com/watch?v=BLcYGmMDvLw John Randall - Atom by Atom Manufacturing Making atomically perfect materials and machines]
 
* micro electro mechanical system atomic force microscopes (MEMS-AFMs) [http://www.icspicorp.com/ icspcorp.com]
 
* micro electro mechanical system atomic force microscopes (MEMS-AFMs) [http://www.icspicorp.com/ icspcorp.com]

Revision as of 11:50, 7 April 2017

Template:Biased

The direct path is a second pathway to advanced APM systems beside the incremental path.

The objective of the direct path is to attain APM capabilities without the detour over bio-derived and solution phase systems (Skipping directly to technology level III). There are several hard hurdles where progress seems slow. Like Increase of speeds of atomic resolution SPM, miniaturization of SPM and vacuum systems, multi-tip interaction and more. There is also a lack of potential side products (?).

APM may have earned so much critique partly because of the prominence of the direct compared to the incremental path. Then again the incremental path may have seemed very obscure and unfeasible to the knowledgeable public up until recently.

Low speed low vacuum and high error rate lead to:

  • the necessity of rather small proto manipulator designs more on the assemblers end of the spectrum than on the nanofactory end.
  • minimal Hydrocarbon designs. See the Discussion of proposed nanofactory designs.
  • hydrosilicon design.

The approach is to skip the outlined technology levels of the incremental path and try to create at least one very simple hydrocarbon robotic mechanosyntesis core from which via exponential assembly a nanofactory can be spawned.

  • Less ambitious: massively parallel MEMS APM. ...

Difficulties

  • providing resource materials like ethine and germanium source stuck to a surface but close together and near the building site is nontrivial
  • for tool-tip recharge cycles more sites are needed
  • how to isolate specific areas from potentially requited gas phase process steps
  • currently reachable vacuum levels are not quite sufficient - encapsulation of a small working volume is hard
  • macroscopic afms are accurate enough (when drift compensated on reference points) but too way too slow
  • microscopic AFMs/STMs may be fast enough but are not as accurate yet
  • coordinating multiple tips is actively researched but barely possible and very slow
  • operation of current UHV system is painstakingly slow - days to weeks
  • patterned layer epitaxy uses a thermodynamic process between de-passivation steps limiting reliability. [to check]
  • with patterned layer epitaxy breaking loose movable parts seems difficult because: it seems hard to create overhangs, controllably breakable sparse tack down bonds and adjacent closely contacting passivated surfaces.
  • replenish-ability
  • harsh CVD conditions (when used)
  • ...

Furter discussion of the individual issues by people knowledgeable in those areas is needed.

build plattform size extension

On natural crystals atomically flat areas have only limited size. For CVD grown diamond this is even more so than for silicon. The size of facets should at least provide enough space for the assembly of tool-tips. If the capability to form overhangs is present one can build an inverted pyramid (sparsely filled to save time) to gain a perfectly flat surface of grater size.

Two types of DME design

Depending how direct one assumes technology level III is acessible one may choose from two voluntary design restrictions.

Those are A pure hydrocarbon structures (with sparsely included germainum allowed [add ref]) and B structures incorporating various nonmetals for e.g. elegant surface passivations from second and third row of the periodic table.

  • If one assumes skipping of technology levels will succeed first a plethora of pre-existing right of the bat buildable structures will be very helpful.
  • If one assumes incremental technology improvement will lead us further nonmetal including structures can provide a "final goal" sketch
  • in reality somewhat in-between might happen.

Both choices have reason to be made and should probably be followed in parallel.

Relation to the incremental path

Link to the articles "Toward Advanced Nanotechnology:..." from K. Eric Drexlers Blog.

At the beginning of the research and exploratory engineering for advanced APM the hurdle to overcome the barrier to gain mechanosynthetic capabilities in the form of technology level III (the now outdated concept of assemblers was the primary model back then) was underestimated by many. The gap between the nature of biological systems and the nature of the target technology seemed to be too big to bridge in any foreseeable way. Thus by many an approach through direct tip based manufacturing with macro/microscopic tools (and some minimal chemical synthesis) was and still is seen as the primary route to go.

With new developments in the "nature inspired" molecular science department the mentioned gap closed down to a point where the further path became more foreseeable. With "new developments" what is meant here is mainly structural DNA nanotechnology (but also some other areas). This is actually quite far from biology. An "artifibiological" intermediate link one could say.

Still it's hard to say whether the direct path is competitive or not. At least it will certainly contribute in the form of "working down from the other side". Capability of chemical synthesis of tool-tips for diamondoid mechanosynthesis (following link suggested) will be very valuable.

Transmission electron microscopy as atomically precise manipulation tool

Some developments in late 2016 have shown that transmission electron microscopes can be used to convert non atomically precise structures into atomically precise structures. This works only in some specific cases though.

The usually damaging effect of the imaging electrons is exploited probably in the following way:

  • The target area is hit strongly localized by the electron beam on high power producing a somehow random result.
  • The target area is hit strongly localized by the electron beam on low power to check whether the somewhat randomly resulted configuration fits the desired result.
  • If it does the beam is focused to the next spot expanding the sorted atomically precise area
  • If it does not not the process is repeated.

Some machine learning might be involved for generating the beam in a shape that is most likely to produce the desired result (details not yet clear to the author of these lines).

The benefit in comparison to SPM is that it supposedly works naturally in 3D space.

Here's a different method that judging from this concept picture [1] from "2D materials: Metallic when narrow" does allow only very limited control:

  • Related paper: "Directing Matter: Toward Atomic-Scale 3D Nanofabrication." [2]
  • The technique was used in this work: "Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers" [3]

Related

External Links