Ternary and higher gem-like compounds
This page is about:
- looking through materials made out of three chemical elements (somewhat systematically) and
- checking for their potential usefulness as mechanical base materials for
mechanical metamaterials in future advanced atomically precise technology.
The focus of this page is on ternary materials. That is materials made out of three elements.
Three is still a small number and may make for simpler crystal structures.
- A part of the materials here are the the salts of oxoacids that add just one type of metal.
- A part of the materials here are rock forming minerals.
Contents
Metastable materials
Note that with mechanosynthesis it is possible to control solid solutions series in a novel non-statistical manner.
With creation of materials by melting and recrystallisation (that is the "normal" thermodynamic means of today) atoms that are chemically similar often can and will not form regular patterns on cooling and solidifying but remain in a mixed chaotic state.
When materials are created via mechanosynthesis (which does not involve heating the material) then the atoms can be deliberately placed in (within bounds) arbitrary non random checkerboard-patterns on any scales.
And the atoms will stay there (at their entropically unstable position) as long as the material is not heated so much that notable diffusion sets in. Room temperature and quite way above can be ok for. It all depends on the particular design in question.
See "pseudo phase diagrams" and "neo-polymorphs" for more information.
most common metal rich core mantle transition zone minerals
In the earths mantle and crust silicon and oxygen are the most abundant elements. On the borther to earths outer core this changes to iron and nickle. Down there the most abundant minearls are made from mixture of those elements. As a sidenote: In nature when iron rich metal is available in stochiometric excess heterogenous pallasite is formed. This rock looks really beautiful and can be found in some meteroids - recommendation to check it out.
- mixing series of olivine (wikipedia) / peridot (wikipedia) - (Mg,Fe)2SiO4
- with high pressure modifications: wadseylite (wikipedia) and ringwoodite (wikipedia)
Of interest as diamondoid materials may be the pure end members of the mixing series:
- Fayalite Fe2SiO4
- Forsterite Mg2SiO4
- Tephroite Mn2SiO4 (less interesting since Mn is more scarce)
- Titanium Silicate TiSiO4
related minerals:
- Ca(Mg,Fe)SiO4 - wikipedia: magnesium and iron monticellite
- CaTiSiO5 - wikipedia: Titanite or Sphene (optical dispersion exceeding diamond; birefringent)
- Mn3Al2(SiO4)3 - wikipedia: spessartine - (with rather rare Manganese)
- FeTiO3 - wikipedia: Ilmenite
- Al2SiO5 andalusite Wikipedia:Andalusite Mohs 6.5-7.5 and kyanite Wikipedia:Kyanite Mohs 4.5-5 & 6.5-7
The spinell group (wikipedia)
These oxide minerals are devoid of the ubiquitously present silicon.
aluminum spinells
- MgAl2O4 - wikipedia: spinell
- FeAl2O4 - wikipedia: hercynite
- (Mg,Fe)Al2O4 - wikipedia: caylonite - mixing series inbetween the former two
- ZnAl2O4 - wikipedia: gahnite
- BeAl2O4 - wikipedia: crysoberyll
- MnAl2O4 - wikipedia: galaxite - (with rather rare manganese) - image
iron spinells
- MgFe2O4 - wikipedia: magnesioferrite
- TiFe2O4 - wikipedia: ulvöspinel
- ZnFe2O4 - wikipedia: franklinite
- NiFe2O4 - wikipedia: trevorite
- MnFe2O4 - wikipedia: jacobsite - (with rather rare manganese)
related compound:
- ZnFe3O4 - wikipedia: zinc ferrite - synthetic zinc ferrites
Pseudobrookite group - common in titanium rich lunar soil
From wikipedia page Armacolite: "End members are armalcolite ((Mg,Fe)Ti2O5), pseudobrookite (Fe2TiO5), ferropseudobrookite (FeTi2O5) and karrooite (MgTiO5). They are isostructural and all have orthorhombic crystal structure and occur in lunar and terrestrial rocks."
- Fe2TiO5 wikipedia: Pseudobrookite (Mohs 6)
Related compounds:
- Fe2Ti3O9 Pseudorutil (de) (Mohs 3)
- (Fe,Ca)SiO3 Pyroxferroite (Mohs 4.5-5.5)
Alkali and earth alkali compounds
They tend to be rather soluble in binary compounds (you won't find many there) in ternary and higher compounds they tend to form less water soluble minerals. See: compounds with s-block metals
- Ca(OH)2 calcium hydroxide aka slaked lime (rather water soluble)
- CaCO3 calcium carbonate (very slightly soluble)
- MgCO3 magnesium carbonate aka magnesite (slightly soluble)
- Mg3B7O13Cl boracite (very slightly water soluble)
Other
- Various silicates [1]
- Sinoinite (SiNO) somewhere in the pseudo phase diagram that spans a triangle between silicon oxygen and nitrogen where also the more widely known binary stochiometries SiO2 and Si3N4 lie.
Another interesting tertiary material falling in this scheme would be CSiO 4
a solid intermediate material between CO2(gas) SiO2(solid quartz): [2]
(A prototypical pseudo phase diagram.)
- AlPO4 berlinite Wikipedia:Berlinite Mohs 6.5 (similar to quartz)
- MnCO3 rhodochrosite [3] Mohs 3.5-4
- MnSiO3 rhodonite [4] Mohs 5.5-6.5
- Na4Al3Si9O24Cl marialite Mohs 5.5-6 (scapolite end member)
- Ca4Al6Si6O24CO3 meionite Mohs 5-6 (scapolite end member)
- Cu2FeSnS4 stannite [5] (contains unabundant copper and tin) Mohs 4
- CuFeS2 calcopyrite [6] Mohs 3.5 (unabundant copper | metallic gold)
- CuFe2S3 cubanite Mohs 3.5-4 orthorhombic
- Fe9Ni9S16 pentlandite [7] (Mohs 3.5-4 cubic)
MAX phases [8] … layered, hexagonal carbides and nitrites exhibiting both metallic and ceramic characteristics.
The max phases made form the mosts abundant elements are the ones with titanium as M and rock forming elements (Si or Al) as A:
211: Ti2AlC, Ti2AlN, Ti2SC
312: Ti3AlC2, Ti3SiC2
413: Ti4AlN3, Ti4SiC3
Some MAX phases with rare but not extremely rare elements:
211 M = Ti: Ti2PbC, Ti2SnC, Ti2ZnC, Ti2ZnN
211 M = Zr: Zr2AlC, Zr2SC, Zr2PbC, Zr2SnC
211 M = Cr: Cr2AlC
211 M = V: V2AlC, V2PC, V2ZnC
211 M = Nb: Nb2AlC, Nb2SC, Nb2PC, Nb2SnC, Nb2CuC
211 A = Al: Zr2AlC, Cr2AlC, V2AlC, Nb2AlC
211 A = Cu: Nb2CuC
211 A = Pb: Ti2PbC, Zr2PbC
211 A = Sn: Ti2SnC, Zr2SnC, Nb2SnC
211 A = Zn: Ti2ZnC, Ti2ZnN, V2ZnC
211 A = S: Zr2SC, Nb2SC
211 A = P: V2PC, Nb2PC
312: Ti3SnC2, Ti3ZnC2, Zr3AlC2, V3AlC2
413: V4AlC3, Nb4AlC3
MAX phases with highly rare elements like (Sc,Mo,Hf,Ta; Cd,Ga,In,Tl,Hf,Ge,As) have been excluded from the listing here.