Nanomechanics is barely mechanical quantummechanics

From apm
Jump to: navigation, search
The three parameters (temperature, inertia, confinement) that can be used to get something to behave quantum mechanically. Note that an apparent absence of an angular constraint is still a constraint to a finite 360° (or 720° taking the properties of electrons into account).
(wiki-TODO: Make the graphic less silly - no triangle frame - Boltzmann factor - ...)

This is just a rule of thumb estimation with simple algebra
in order to go get a very crude initial estimate.

This page judges "quantummechanicalness" in the sense of
emerging quantizedness (stemming from the uncertainty relationship)
starting to show notable effects.

There's also the topic of sufficient isolation of systems towards the environment (and possibly towards each other)
such that these systems can entangle relative to the environment (and possibly relative to each other).
That is: To allow for multiple classically inconsistent realities to "quantum exist" at the same time.
The right quantitative measure for "quantummechanicalness" in this regard is likely
the maximally possible decoherence time in relation to the typical timescale of the system.
Related: quantum decoherence, mixed states, density matrix, ...

(wiki-TODO: Find a similarly simple rule of thumb estimation for say decorerence time of levitated crystolecules)

Math

Let us define "quantumness" as the ratio of

  • the energy quantisation (the minimum allowed energy steps) to
  • the average thermal energy in a single degree of freedom

The logarithm of the Boltzmann factor ("Quantumness"):
Q=ΔEQuantumEThermal


Thermal energy per degree of freedom (thermal "quantum")

First we'll need the thermal energy:
Equipartitioning:
EThermal=12kBT=12β

Energy per quantum (quantum mechanical quantum)

The size of the energy quanta ΔEQuantum

  • depends on the system under consideration.
  • falls out from the spacial restraints (linear or circular) that
    enforce a minimum impulse and thus a minimum energy

Reciprocative linear motion

To see quantum behaviour (in position space) the system must be spatially bounded.
Thus reciprocative motion (here in a 1D box) considered.

The uncertainty relation: ΔxΔph


Kinetic energy: ΔEQuantum=Δp22m

Quantumness: Qtrans=h2kB1mΔx2T

Reciprocative circular motion

Here alpha is the fraction of a full circle that is passed through in a rotative oszillation.
For a normal unidirectional rotation alpha must be set to 2pi.

The uncertainty relation: ΔαΔLh


Kinetic energy: ΔEQuantum=ΔL22I

Quantumness: Qrot=h2kB1IΔα2T

Values

With the Boltzmann constant: kB=1.381023J/K

we get the
Average thermal energy per degree of freedom: ET=300K=4141023J

rotative (full 360°)

L0==1.0541034kgm2/s


L0=Iω0=2mr2ω


Nitrogen molecule N2: 2r=0.11nmmN=2.31026kg


ω0=2πf=7.51011s1


f0=119GHz


E0=Iω20/2=L0ω0/2


Size of energy quanta: E0=3.951023J


Quantumness: Qrot<1/100


is rather small thus we have pretty classical behaviour (at room-temperature).

Note that dinitrogen is a single free floating lightweight molecule.
In advanced nano-machinery there are axles made of thousands and thousands of atoms which
are in turn stiffly integrated in an axle system made out of many millions of atoms.
This is making energy quantization imperceptibly low even at liquid helium temperatures.
That is why "Nanomechanics is barely mechanical quantummechanics".

Getting quantum mechanically behaving nanomechanics would take deliberate efforts:

linear

...

general

Vibrations of individual molecules can behave quite quantummechanically even at room-temperature. This is the reason why the thermal capacity of gasses (needed energy per degree heated) can make crazy jumps even at relatively high temperatures. (Jumps with a factor significantly greater than one.)

Discussion

There are three parameters that can be changed to get something to behave more quantum mechanically.
The three options are:

  • (1) lowering temperature
  • (2) lowering inertia
  • (3) decreasing the degree of freedom

Deviations from equipartitioning theorem & Dulong Petite law

Note that on average it is not kT/2 per degree of freedom.
The equipartitioning theorem naively applied corresponds to the Dulong Petite law in solids.
Three kinetic energy DOFs and three potential energy DOFs makes 6 times kT/2.
Multiplying the Avogardo constant for one mol of matter: 3R = 3 NA kB T

Diamond is especially strongly deviating to less than 3kT per atom.
Not only at very low temperatures. Even at room temperature the effect is significant (~factor 3).

Successivlely more accurate models are Einstein model, Debye model, and
using DFT calculations to get actual density of states for phonons.

Related

External links

Qunatummechanicalness in terms of quantizedness:

Wikipedia:

Quantummechanicalness in terms of decoherence time:

Wikipedia: