Gemstone-like molecular element

From apm
(Redirected from Crystolecules)
Jump to: navigation, search
Here is a rather small structural diamondoid crystolecule with some bonds (brighter red) intentionally left open/dangling/unpassivated. A crystolecule fragment. Such surface interfaces can be fused together via seamless covalent welding in the second assembly level and perhaps higher assembly levels.
A proposed acetylene sorting pump. This is a larger diamondoid machine element (DME). Possibly assembled from several pre-produced smaller diamondoid crystolecules. The frame is one big monolithic crystolecule (it may be fused togehter via seamless covalent welding during assembly). Other parts are smaller independent crystolecules that may be mechanosynthesized fully passivated as a whole and integrated as a whole without any seamless welding.

Gemstone-like molecular elements (GMEs) here also called crystolecules are parts of machine elements and structural elements at the lowermost physical size limit. They are produced via piezochemical mechanosynthesis and are often highly symmetrical. Gemstone-like molecular elements are the basic building blocks in gemstone metamaterial technology.

Base material

Gemstone-like compounds are the most suitable base material for crystolecules. Beside classical gemstones like diamond other semi-precious minerals including bio-minerals that are synthesizable in solution also fall under gemstone-like compounds. These may be accessible earlier in semi advanced precursor technologies.

Use of pure metals and metal alloys is rather unsuitable for crystolecules.

  • Metallic bonds with free electron gas are not directed like covalent bonds.
  • Metal atoms on metal surfaces tend to diffuse away from where they have been deposited. Especially on surfaces.

Crystolecules are:

Given their nanoscale gemstone like nature unfortunately crystolecules and their assemblies crystollecular (machine) elements cannot be produced yet (state 2015..2021).

A subclass of gemstone-like compounds are diamond like compounds. (For a disambiguation see: Diamondoid)
Accordingly a subclass of gemstone-like molecular elements are diamondoid molecular elements.

Beware of the stroboscopic illusion

well animated bearing
The fast thermal vibrations are more realistically blurred out. The remaining localized periodic average deformations (visible here if one looks closely) are highly reversible. (See page abbout "superlubrication".)
badly animated bearing
The present stroboscopic effect can be misleading in that friction is likely to be grossly overestimated. It deceivingly looks like as if the operating speed would be close to the speed of the thermal vibration. If that where the case it indeed would cause massive friction (strong coupling of motions with similar frequency).
DMME - bearing with blurred out fast vibrations
DMME - bearing with misleading stroboscopic effect

Simulated DMEs often show a misleading stroboscopic effect which can make one believe that the operation frequencies lie near the thermal frequencies, giving the false impression of enormously high friction but actually the contrary is true.
See: "Friction in gem-gum technology" and "Superlubrication".

Gemstone like molecular machine elements with sliding interfaces will work exceptionally well. (See: Superlubricity)
There is both experimental evidence and theoretical evidence for that.
(See e.g.: Evaluating the Friction of Rotary Joints in Molecular Machines (paper) and the friction analysis in Nanosystems)

Nomenclature

Since the here described physical objects have no official name yet (2016..2021)
something sensible must be invented to refer to them in this wiki.

"Crystolecules" – Term introduction and definition

These objects are somewhat of a cross between a crystal and a molecule.
So let's use the term "crystolecule".
This is nice because it's:

  • quite accurate in descriptiveness
  • quite conveniently usable in natural language
  • quite memorably (catchy) because it seems unusual (clickbait effect)

Specificall lets use the term "crystolecule" for ones that are typically are:

  • small – stiff – minimal
  • structural
  • monolithic (like illustrated)
  • do (typically) not yet feature irreversibly enclosed moving parts – (no form closure yet – there may be exceptions)
  • are assembled purely at the first assembly level by piezochemical mechanosynthesis (direct in place assembly)

Crystolecular units

See main page: Crystolecular unit

These are bigger assemblies of basic structural crystolecules.
Assembled from crystolecules either via seamless covalent welding or Van der Waals force sticking and/or shape closing interlocking

Let's use a different name for crystolecules or assemblies of crystolecules that are typically:

  • a bit bigger
  • also functional in nature not just structural
  • not monolithic
  • do feature irreversibly enclosed moving parts
  • may involve pick and place post assembly (from constituent crystolecules) at the next higher assembly level

Generally crystolecules and crystolecular units will be made from gemstone like compounds.
One subclass already investigated a bit in molecular detail are the crystolecular units made from diamondoid like compound. Specifically some ones made from diamond and moissanite where investigated. See: Examples of diamondoid molecular machine elements.

Diamondoid molecular (structural and machine) elements – Term introduction and definition

Let's use:

  • Diamondoid molecular structural elements (DMSEs) for structural ones of all sizes including beside small ones also bigger ones
  • Diamondoid molecular machine elements (DMMEs) for functional ones that are typically bigger in size
  • Diamondoid molecular elements (DMEs) for structures of all sized including both of the former
  • ("Diamondoid" can be replaced by "Gemoid" to include more general gemstone like compounds like e.g. sapphire)

Examples:

Delineation – what crystolecules must not be confused with

Crystolecules must not be confused with crystals out of folded up polypeptide molecules aka proteins (that are made today to find the locations of their constituent atoms).
To emphasize the distinction one could use the term "covalent crystolecules".

Related



Terms for bigger assemblies of several crystolecules but not yet as big (and disassemblable) as microcomponents


External links

At K. Eric Drexlers website: