Isostructural bending

From apm
Jump to: navigation, search
This article defines a novel term (that is hopefully sensibly chosen). The term is introduced to make a concept more concrete and understand its interrelationship with other topics related to atomically precise manufacturing. For details go to the page: Neologism.

By substituting compatible elements in a crystal structure (a specific structure type to be more concrete) one introduces stresses due to the different diameters of the new atoms. In thin rods and plates that are a only a few atomic layers across these stresses can partially relax by bending (strains). This can be useful for making cylindrical geometries like axle housings and helical geometries like guiding screws.


Carbon atoms in diamond or lonsdaleite (== hexagonal diamond) can be replaced with silicon atoms at any ratio. (In case of a 1:1 ratio one has the gemstone compound called moissanite.)

When there's a pseudo phase diagram between two different compounds with the same structure-type then in most cases it should be possible to do some checkerboard patterning. As a concrete example one can replace titanium with silicon in the rutile structure type (C4). This is effectively moving around in the rutile <=> stishovite pseudo phase diagram. In case of the rutile structure there are a lot of compatible elements thus one can extend the diagram to a triangle, a tetrahedron, a hyper-tetrahedron and so on.

Where to take care

Care must be taken though. Going all the way from a specific structure type like e.g. SiO2 to the same structure type of CO2 one ends up with a compound that is likely an explosive in bulk since CO2 very much likes to be a molecular gas with strong and low energy C=O double bonds.

Finding compatible elements

To find compatible elements one can first try go down the group in the periodic table.
Here's an example preserving the rutile structure. (We are starting with silicon and jump over the unstable compound of rutile-structure-CO2). The following sequence is: SiO2 (stishovite), GeO2 (argutite), SnO2 (cerrusite), PbO2 (plattnerite).

This especially holds for non metals. In case of the transition metals:

  • 1) going sidewards is often possible too.
    Example preserving rutile structure: TiO2 (rutile), VO2 (no natural mineral present?), CrO2 (no natural mineral present?), MnO2 (pyrolysite)
    No (IV) oxides for iron and following elements (and scandium preceding titanium).
  • 2) the elements of the higher periods get exceedingly rare (main exception is zirconium Zr -- ZrO2 baddeleyite)
    and sometimes pretty toxic (that correlation may not be a coincidence)