Discussion of proposed nanofactory designs
Back: technology level III
Contents
Primitive Nanofactory Design by Chris Phoenix
Meaning of primitive
Instead of incremental technology improvement over technology levels a direct step to diamondoid APM is assumed. Thus the presented nanofactory does represent a design that's supposed to be easy to build when probe based mechanosynthetic capabilities are assumed and does not represent a "final" goal near optimal design where we want to end up. Some hints how to get from the "easy to built" one to the "near optimal" one are given in for Section "4.6. Improving the design". Simple forms of mechanosynthesis and exclusive use of bulk diamond are assumed (graphite and polyyine rods are mentioned later).
Bottommost levels
A qualitative distinction of the bottommost assembly levels like presented here is made further in the document. It is first noted that the factory's organization changes at the bottommost levels. Later in Chapter "5.1. Levels of design" six levels similar but not quite the same as assembly levels are presented.
- The mentioned (1) nanoparts and (2) nanomachines correspond to DMEs and conglomerates of DMEs.
- The (3) nanoblocks correspond to microcomponents with 0.2µm sidelength they are assumed to be rather small thus the name.
- And three further levels are mentioned: (4) patterns (5) fill regions (6) folds
Convergent assembly
Convergent assembly is a central topic in this proposal nonetheless it isn't summarized in chapter "9. Conclusion and discussion" and you have to carefully read through the whole document to get the picture. Thus a summarization is given here.
The existence of general purpouse mechanosynthetic devices capable of production of 200nm sidelength nanoblocks is assumed (see "Meaning of primitive" above). They are called fabricators.
A set of eight plus one redundant fabricators (in a single layer) at the bottommost levels is a lot slower then the first mergement stage (atom by atom mechanosynthesis vs simple snap together) The first mergement stage is thus greatly underchallenged and operated way below its potential. A stack of multiple layers of those fabricator sets (or usage of mill systems) could provide the speed but is not chosen to avoid the need of transport through fabricator layers.
A strictly ordered stratified design with octal branching/(stage merging) (plus one redundant) and octal assembly/(nanoblock merging) follows upwards for four stages. The ratio eight to eight leaves the assembly time constant instead of doubling it (in case of a not used four to eight ratio) what would be natural according to the scaling law of frequency.
- The excessive idle time inherited from the base of fabricator nine tupels shrinks every stage upward to idle_time/2^4 = idle_time/16
- A 3x3 square turns into a (2x2)x2 block => after four stages empty space builds up (3/2)^4 ~ 5
Above the fourth stage a local microcomputer is situated that steers this production module without feedback control and almost completely reversible. The hole structure of fabricators plus 4 stages plus comuter plus logistics is called a production module Continuing upward those modules are assembled in a 3D fractal fashion (adhering scaling law ? - to check).
- This design uses convergent assembly in a non n^2/m^3 ratio of hand-up to mergement.
Vacuum
[Todo: sum up what is sayed about vacuum].