Difference between revisions of "Molecular assembler (disambiguation)"
(moved out from "technology level III" page) |
|||
Line 18: | Line 18: | ||
* ''and many more ...'' | * ''and many more ...'' | ||
* the design of [[robotic mechanosyntesis core]]s | * the design of [[robotic mechanosyntesis core]]s | ||
+ | |||
+ | The current concetpt for advanced APM of [[Technology level III]] are [[APM factories|atomically precise small scale factories]]. | ||
+ | |||
+ | [[Category: Technology level III]] |
Revision as of 12:49, 1 June 2014
Note: The concept of assemblers is outdated!
The idea is to create a machine with side-lengths of a few hundred nanometers which packages all the functionality to produce useful products and also make copies of itself (directly with diamondoid mechanosynthesis). This way you get an exponential rate of replication and can produce macroscopic goods in reasonable amounts of time.
It turned out that packaging all the functionality into such a small package is a rather unbalanced and inefficient approach for technology level III. This can be seen in the nanofactory cross section image (further down this page) where it is visible that the bottommost assembly levels (here layers) take the largest portion of the stack. In the small package of an assembler the bottommost layers would be underrepresented making it rather slow.
Quite a bit of thought was put into the assembler model [Todo: link KSRM]. Either they where supposed to swim about in a solution or there was some form of movement mechanism in a machine phase scaffold crystal envisioned like:
- sliding cubes [TODO add references]
- legged blocks [TODO add references]
The combination of their appearance (legs) with their very tightly packed capability of self replication in their vacuum "belly" that seem akin to a "whomb" led to the situation that the public started to perceive this technology as swarms of tiny life like nano-bugs that could potentially start uncontrollable and unstoppable self replication. Why this is a rather miss-informed opinion can be read up here.
Many considerations about assemblers are still relevant:
- methods for movement e.g. for the transport of microcomponents and self repair by microcomponent replacement in the higher assembly levels of nanofactories. The legged block mobility design is also known from the concept of (speculative) Utility Fog but has other design priorities in a manufacturing context like more rigidity and less "intelligence".
- methods for gas tight sealing and locking parts out
- and many more ...
- the design of robotic mechanosyntesis cores
The current concetpt for advanced APM of Technology level III are atomically precise small scale factories.