Difference between revisions of "Gemstone-like molecular element"

From apm
Jump to: navigation, search
(Base material: added links to assembly levels)
 
(130 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Diamondoid molecular elements''' (DMEs) are '''[https://en.wikipedia.org/wiki/Structural_element structural elements] or [https://en.wikipedia.org/wiki/Machine_element machine elements] at the lower physical size limit'''. They often are highly symetrical.
+
[[File:Tetrapod-openconnects display large square.jpg|300px|thumb|right|Here is a rather small structural [[diamondoid]] [[crystolecule]] with some bonds (brighter red) intentionally left [[Nanoscale surface passivation|open/dangling/unpassivated]]. A [[crystolecule fragment]]. Such [[surface interface]]s can be fused together via [[seamless covalent welding]] in the [[second assembly level]] and perhaps higher assembly levels.]]
Since '''metals are unsuitable''' (they lack directed bonds and tend to [https://en.wikipedia.org/wiki/Surface_diffusion diffuse]) [[diamondoid]] materials must be used.
+
  
* DM machine elements (DMMEs) ([http://www.zyvex.com/nanotech/visuals.html examples]) like bearigs and gears have completely passivated surfaces.
+
[[File:atomistic acetylene sorting pump model.jpg|frame|A proposed [[acetylene sorting pump]]. This is a larger [[diamondoid machine element]] (DME). Possibly assembled from several pre-produced smaller [[diamondoid crystolecule]]s. The frame is one big monolithic crystolecule (it may be fused togehter via [[seamless covalent welding]] during assembly). Other parts are smaller independent crystolecules that may be [[piezochemical mechanosynthesis|mechanosynthesized]] fully passivated as a whole and integrated as a whole without any seamless welding.]]
* DM structural elements (DMSEs) ([http://www.thingiverse.com/thing:13786 example]) are minimally sized structural building blocks that are only partially passivated. They expose multiple radicals on some of their surfaces that act as [[atomic precision|AP]] [[surface interfaces|welding interfaces]] to complementary surfaces. The step of connecting [[surface interfaces]] is done in [[assembly levels|assembly level II]] and is irreversible.
+
  
'''Name suggestion:''' since DMEs are somewhat of a cross between crystals and molecules why not call them '''"crystolecules"'''
+
'''Gemstone-like molecular elements''' (GMEs) here also called '''crystolecules''' are parts of machine elements and structural elements at the lowermost physical size limit.
 +
They are produced via [[piezochemical mechanosynthesis]] and are often highly symmetrical.
 +
Gemstone-like molecular elements are the basic building blocks in [[gemstone metamaterial technology]].
  
*    DME ... Diamodoid Molecular Element (stiff - small - minimal)
+
= Base material =
*    DMME ... D.M. Machine Element
+
*    DMSE ... D.M. Structural Element
+
  
= Diamondoid molecular machine elements =
+
[[Gemstone-like compounds]] are the most suitable base material for crystolecules.
 +
Beside classical gemstones like diamond other semi-precious minerals including bio-minerals that are synthesizable in solution also fall under gemstone-like compounds.
 +
These may be accessible earlier in [[technology level II|semi advanced]] precursor technologies.
  
Images of some [http://www.zyvex.com/nanotech/visuals.html examples].
+
Use of [[pure metals and metal alloys]] is rather unsuitable for crystolecules.
 +
* Metallic bonds with free electron gas are not directed like covalent bonds.
 +
* Metal atoms on metal surfaces tend to [//en.wikipedia.org/wiki/Surface_diffusion diffuse] away from where they have been deposited. Especially on surfaces.
  
== Types ==
+
Crystolecules are:
 +
* assembled from small [[molecule fragments]] – in the [[Assembly level 1 (gem-gum factory)|first assembly level]] – typically mostly irreversible
 +
* assembled to bigger [[crystolecular unit]]s – in the [[Assembly level 2 (gem-gum factory)|second assembly level]] – typically partially irreversible
  
=== Bearings  ===
+
'''Given their nanoscale gemstone like nature unfortunately crystolecules and their assemblies [[crystollecular element|crystollecular (machine) elements]] cannot be produced yet (state 2015..2021).'''
  
[Todo: describe incommensurate [[superlubrication|superlubrication]] & pullout bearing effect & "binary" effect]
+
A subclass of [[gemstone-like compounds]] are [[diamond like compounds]]. (For a disambiguation see: [[Diamondoid]]) <br>
 +
Accordingly a subclass of [[gemstone-like molecular element]]s are [[diamondoid molecular element]]s.
 +
* '''[[Diamondoid molecular machine element]]s''' (DMMEs) are assemblies of some diamondoid crystolecules implementing one specific mechanical function
 +
* '''[[Diamondoid molecular structural element]]s''' (DMSEs) are crystolecules or assemblies of some diamondoid crystolecules implementing a structural function
  
=== Fasteners  ===
+
= Beware of the stroboscopic illusion =
  
[Todo: describe locking mechanisms: hierarchical; barrier; difference to makro; covaconn;...]
+
{| class="wikitable floatright" style="margin-left: auto; margin-right: 0px;"
 +
|-
 +
|'''well animated bearing''' <br> The fast thermal vibrations are more realistically blurred out. The remaining localized periodic average deformations (visible here if one looks closely) are highly reversible. (See page abbout "[[superlubrication]]".)
 +
|'''badly animated bearing''' <br> The present stroboscopic effect can be misleading in that friction is likely to be grossly overestimated. It deceivingly looks like as if the operating speed would be close to the speed of the thermal vibration. If that where the case it indeed would cause massive friction (strong coupling of motions with similar frequency).
 +
|-
 +
| [[File:SmallBearingSmoothAnimation.gif|right|DMME - bearing with blurred out fast vibrations]]
 +
|[[File:SmallBearingStrobeAnimation.gif|right|DMME - bearing with misleading stroboscopic effect]]
 +
|}
  
=== Others  ===
+
'''Simulated DMEs often show a misleading stroboscopic effect''' which can make one believe that the operation frequencies lie near the thermal frequencies, giving the false impression of enormously high friction but actually the contrary is true. <br>
 +
See: "[[Friction in gem-gum technology]]" and "[[Superlubrication]]".
  
[Todo: gears, pumps, telescoptc rods .... DME issues lack of ball curvature & DMSEs?]
+
Gemstone like molecular machine elements with sliding interfaces will work exceptionally well. (See: [[Superlubricity]]) <br>
 +
There is both experimental evidence and theoretical evidence for that. <br>
 +
(See e.g.: [[Evaluating the Friction of Rotary Joints in Molecular Machines (paper)]] and the friction analysis in [[Nanosystems]])
  
== Sets ==
+
= Nomenclature =
  
=== Minimal set of compatible DMMEs  ===
+
Since the here described physical objects have no official name yet (2016..2021) <br>
 +
something sensible must be invented to refer to them in this wiki.
  
In electric circuits there is one topological and three kinds of basic passive elements.<br>
+
= "Crystolecules" – Term introduction and definition =
Adding an active switching element one can create a great class of circuits. <br>
+
'''0) fork node; 1) capacitors; 2) inductors; 3) resistors'''
+
  
Those passive elements have a direct correspondences in rotative or reciprocating mechanics namely: <br>
+
These objects are somewhat of a cross between a crystal and a molecule. <br>
'''0) planetary or differential gearbox [*]; 1) springs; 2) inertial masses; 3) friction elements''' <br>
+
So let's use the term '''"crystolecule"'''. <br>
[*] and analogons for reciprocating mechanics
+
This is nice because it's:
 +
* quite accurate in descriptiveness
 +
* quite conveniently usable in natural language
 +
* quite memorably (catchy) because it seems unusual (clickbait effect)
  
But there are limits to the electric-mechanic analogy. Some mechanic elements often differ significantly from their electric counterparts in their qualitative behavior.
+
Specificall lets use the term "crystolecule" for ones that are typically are:
Two examples of elements  quite different in behaviour are:
+
* small – stiff – minimal
* transistors & locking pins
+
* structural
* transformers & gearboxes
+
* monolithic (like illustrated)
 +
* do (typically) not yet feature irreversibly enclosed moving parts – (no [[form closure]] yet – there may be exceptions)
 +
* are assembled purely at the first assembly level by [[piezochemical mechanosynthesis]] (direct [[in place assembly]])
  
With creating a set of standard sizes of those elements and a modular building block system to put them together
+
= Crystolecular units =
creating rather complex systems can be done in a much shorter time. <br>
+
Like in electronics one can first create a schematics and subsequently the board.
+
+
'''To do:''' Create a minimal set of minimal sized DMMEs for rotative nanomechanics.
+
Modular housing structures standard bearings and standard axle redirectioning are also needed.
+
  
'''To investigate:''' how can reciprocating mechanics be implemented considereng the [[passivation bending issue]]
+
'''See main page: [[Crystolecular unit]]'''
  
= Diamondoid molecular structural elements =
+
These are bigger assemblies of basic structural crystolecules. <br>
 +
Assembled from crystolecules either via [[seamless covalent welding]] or [[Van der Waals force sticking]] and/or [[shape closing interlocking]]
  
[[File:Wiki-tetrapod-openconnects-black-135.png|frame| An example of a diamondoid molecular structural element (DMSE). The bright red spots are open bonds.]]
+
Let's use a different name for crystolecules or assemblies of crystolecules that are typically:
 +
* a bit bigger
 +
* also functional in nature not just structural
 +
* not monolithic
 +
* do feature irreversibly enclosed moving parts
 +
* may involve pick and place post assembly (from constituent crystolecules) at the next higher assembly level
  
==sets==
+
Generally crystolecules and [[crystolecular unit]]s will be made from [[gemstone like compound]]s. <br>
 +
One subclass already investigated a bit in molecular detail are the [[crystolecular unit]]s made from [[diamondoid like compound]].
 +
Specifically some ones made from [[diamond]] and [[moissanite]] where investigated.
 +
See: '''[[Examples of diamondoid molecular machine elements]].'''
  
[Todo: describe standardized building block systems]
+
== Diamondoid molecular (structural and machine) elements – Term introduction and  definition ==
  
= General properties =
+
Let's use:
 +
* Diamondoid molecular structural elements (DM'''S'''Es) for structural ones of all sizes including beside small ones also bigger ones
 +
* Diamondoid molecular machine elements (DM'''M'''Es) for functional ones that are typically bigger in size
 +
* Diamondoid molecular elements (DMEs) for structures of all sized including both of the former
 +
* ("Diamondoid" can be replaced by "Gemoid" to include more general gemstone like compounds like e.g. [[sapphire]])
  
== soft or hard? ==
+
Examples:
 +
* On this wiki: [[Examples of diamondoid molecular machine elements]]
 +
* (DM'''M'''Es) ([http://www.zyvex.com/nanotech/visuals.html examples]) like e.g. bearings and gears have completely passivated surfaces.
 +
* (DM'''S'''Es) ([http://www.thingiverse.com/thing:13786 example]) these are typically only partially passivated. They can expose multiple radicals on some of their surfaces that act as [[positional atomic precision|AP]] [[surface interfaces|welding interfaces]] to complementary surfaces. The assembly step of connecting [[surface interfaces]] is here called "[[seamless covalent welding]]" and is done in the next higher assembly level ([[assembly levels|assembly level II]]?). [[Seamless covalent welding]] it usually is irreversible but sparsely linking versions may be reversible.
  
DMEs with carbon, silicon carbide or silicon as core material can be can have internal structure like
+
== Delineation – what crystolecules must not be confused with ==
* diamond / [//en.wikipedia.org/wiki/Lonsdaleite lonsdaleite]
+
* or other possibly strained [//en.wikipedia.org/wiki/Sp3_bond#sp3_hybrids sp<sup>3</sup>] configurations.
+
Due to the lack of defects the [//en.wikipedia.org/wiki/Ultimate_tensile_strength ultimate tensile strength] of larger DMEs lies above diamond of thermodynamic origin.
+
  
When viewing the thickness of a surface as the distance from the point of maximally attractive VdW force to the point of equally repulsive VdW force (experienced by some probing tip) the thickness of the surface relative to the thickness of the diamondoid part is enormous.
+
Crystolecules must not be confused with crystals out of folded up polypeptide molecules aka proteins (that are made today to find the locations of their constituent atoms). <br>To emphasize the distinction one could use the term "covalent crystolecules".
This makes DMEs somewhat soft in compressibility but not all that much as can be guessed by the compressibility of [http://en.wikipedia.org/wiki/HOPG single crystalline graphite] which is a stack of graphene sheets.
+
 
 +
= Related =
 +
 
 +
* '''[[Terminology for parts]]'''
 +
* For components at different size scales see: [[Components]]
 +
* [[Stroboscopic illusion in crystolecule animations]]
 +
* [[Example crystolecules]]
 +
* [[nanoparticle]]s
 +
* [[In place assembly]]
 +
* putting molecule-fragments together to crystolecules [[Mechanosynthesis core]]
 +
* putting crystolecules together to microcomponents [[Crystolecule assembly robotics]]
 +
-----
 +
* [[Mechanical circuit element]]s
 +
-----
 +
Terms for bigger assemblies of several [[crystolecules]] but not yet as big (and disassemblable) as [[microcomponents]]
 +
* [[Diamondoid crystolecular machine element]] – diamond like structure – See: [[Diamondoid]]
 +
* [[Crystolecular machine element]] – more general gemstone like structure – See: [[gemstone like compound]]
 +
-----
 +
* assembled from [[molecule fragments]]
 +
* assembled to [[crystolecular element]]s
 +
* assembly is typically irreversible
 +
 
 +
= External links =
 +
 
 +
At K. Eric Drexlers website:
 +
* [http://e-drexler.com/p/04/02/0315bearingDiag.html A shaft in a sleeve can form a rotary bearing]
 +
* [http://e-drexler.com/p/04/03/0323bearingDesigns.html Sleeve bearings have been designed and modeled in atomic detail] (here shown minus the stroboscopic illusion)
 +
----
 +
* [//en.wikipedia.org/wiki/Structural_element structural elements]  
 +
* [//en.wikipedia.org/wiki/Machine_element machine elements]
 +
* [http://www.iberchip.net/iberchip2006/ponencias/86.pdf Design of Nanomachines using NanoEngineer-1]
 +
* "Nanomachines: How the Videos Lie to Scientists" [https://web.archive.org/web/20160322114752/http://metamodern.com/2009/02/10/nanomachines-how-the-videos-lie-to-scientists/ (archive)] [http://metamodern.com/2009/02/10/nanomachines-how-the-videos-lie-to-scientists/ (old dead link)]
 +
* without stroboscopic illusion: [https://www.youtube.com/watch?v=RosHyQUw5jI  Molecular dynamics simulation of small bearing design]
 +
* [http://www.somewhereville.com/?p=82 A Low-Friction Molecular Bearing Assembly Tutorial, v1]
 +
 
 +
[[Category:Technology level III]]

Latest revision as of 07:38, 3 July 2022

Here is a rather small structural diamondoid crystolecule with some bonds (brighter red) intentionally left open/dangling/unpassivated. A crystolecule fragment. Such surface interfaces can be fused together via seamless covalent welding in the second assembly level and perhaps higher assembly levels.
A proposed acetylene sorting pump. This is a larger diamondoid machine element (DME). Possibly assembled from several pre-produced smaller diamondoid crystolecules. The frame is one big monolithic crystolecule (it may be fused togehter via seamless covalent welding during assembly). Other parts are smaller independent crystolecules that may be mechanosynthesized fully passivated as a whole and integrated as a whole without any seamless welding.

Gemstone-like molecular elements (GMEs) here also called crystolecules are parts of machine elements and structural elements at the lowermost physical size limit. They are produced via piezochemical mechanosynthesis and are often highly symmetrical. Gemstone-like molecular elements are the basic building blocks in gemstone metamaterial technology.

Base material

Gemstone-like compounds are the most suitable base material for crystolecules. Beside classical gemstones like diamond other semi-precious minerals including bio-minerals that are synthesizable in solution also fall under gemstone-like compounds. These may be accessible earlier in semi advanced precursor technologies.

Use of pure metals and metal alloys is rather unsuitable for crystolecules.

  • Metallic bonds with free electron gas are not directed like covalent bonds.
  • Metal atoms on metal surfaces tend to diffuse away from where they have been deposited. Especially on surfaces.

Crystolecules are:

Given their nanoscale gemstone like nature unfortunately crystolecules and their assemblies crystollecular (machine) elements cannot be produced yet (state 2015..2021).

A subclass of gemstone-like compounds are diamond like compounds. (For a disambiguation see: Diamondoid)
Accordingly a subclass of gemstone-like molecular elements are diamondoid molecular elements.

Beware of the stroboscopic illusion

well animated bearing
The fast thermal vibrations are more realistically blurred out. The remaining localized periodic average deformations (visible here if one looks closely) are highly reversible. (See page abbout "superlubrication".)
badly animated bearing
The present stroboscopic effect can be misleading in that friction is likely to be grossly overestimated. It deceivingly looks like as if the operating speed would be close to the speed of the thermal vibration. If that where the case it indeed would cause massive friction (strong coupling of motions with similar frequency).
DMME - bearing with blurred out fast vibrations
DMME - bearing with misleading stroboscopic effect

Simulated DMEs often show a misleading stroboscopic effect which can make one believe that the operation frequencies lie near the thermal frequencies, giving the false impression of enormously high friction but actually the contrary is true.
See: "Friction in gem-gum technology" and "Superlubrication".

Gemstone like molecular machine elements with sliding interfaces will work exceptionally well. (See: Superlubricity)
There is both experimental evidence and theoretical evidence for that.
(See e.g.: Evaluating the Friction of Rotary Joints in Molecular Machines (paper) and the friction analysis in Nanosystems)

Nomenclature

Since the here described physical objects have no official name yet (2016..2021)
something sensible must be invented to refer to them in this wiki.

"Crystolecules" – Term introduction and definition

These objects are somewhat of a cross between a crystal and a molecule.
So let's use the term "crystolecule".
This is nice because it's:

  • quite accurate in descriptiveness
  • quite conveniently usable in natural language
  • quite memorably (catchy) because it seems unusual (clickbait effect)

Specificall lets use the term "crystolecule" for ones that are typically are:

  • small – stiff – minimal
  • structural
  • monolithic (like illustrated)
  • do (typically) not yet feature irreversibly enclosed moving parts – (no form closure yet – there may be exceptions)
  • are assembled purely at the first assembly level by piezochemical mechanosynthesis (direct in place assembly)

Crystolecular units

See main page: Crystolecular unit

These are bigger assemblies of basic structural crystolecules.
Assembled from crystolecules either via seamless covalent welding or Van der Waals force sticking and/or shape closing interlocking

Let's use a different name for crystolecules or assemblies of crystolecules that are typically:

  • a bit bigger
  • also functional in nature not just structural
  • not monolithic
  • do feature irreversibly enclosed moving parts
  • may involve pick and place post assembly (from constituent crystolecules) at the next higher assembly level

Generally crystolecules and crystolecular units will be made from gemstone like compounds.
One subclass already investigated a bit in molecular detail are the crystolecular units made from diamondoid like compound. Specifically some ones made from diamond and moissanite where investigated. See: Examples of diamondoid molecular machine elements.

Diamondoid molecular (structural and machine) elements – Term introduction and definition

Let's use:

  • Diamondoid molecular structural elements (DMSEs) for structural ones of all sizes including beside small ones also bigger ones
  • Diamondoid molecular machine elements (DMMEs) for functional ones that are typically bigger in size
  • Diamondoid molecular elements (DMEs) for structures of all sized including both of the former
  • ("Diamondoid" can be replaced by "Gemoid" to include more general gemstone like compounds like e.g. sapphire)

Examples:

Delineation – what crystolecules must not be confused with

Crystolecules must not be confused with crystals out of folded up polypeptide molecules aka proteins (that are made today to find the locations of their constituent atoms).
To emphasize the distinction one could use the term "covalent crystolecules".

Related



Terms for bigger assemblies of several crystolecules but not yet as big (and disassemblable) as microcomponents


External links

At K. Eric Drexlers website: