Scaling law

From apm
Revision as of 16:17, 27 January 2014 by Apm (Talk | contribs) (Created page with " With scaling laws one can find out which effects get stronger and which get weaker when machine size is shrunken down. Based on this one can decide which effects are best to ...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

With scaling laws one can find out which effects get stronger and which get weaker when machine size is shrunken down. Based on this one can decide which effects are best to use. As an specifically example electric motors can be taken. Scaling laws tell us that its better to use electrostatic motors (which becume stronger when shrunken) instead conventional magnetic motors (which get weaker). Furthermore scaling laws provide quantitative numbers and can provide some kind of intuitive feel of how the world down there behaves.

Scaling laws are presented right at the beginning of the book Nanosystems.

Scaling laws for mechanical quantities

Forces from compressive and tensile stresses

It can be helpful or at least satisfying to get something of an intuitive understanding for the consistence or "feel" of DME components.

As the size of a rod of any material shrinks linearly (in all three dimensions) the area of the cross section shrinks quadratically. Consequently when keeping tension/compression stress constant the forces fall quadratically and one arrives at very low forces. [Sacling law: longitudinal force ~ length^2] This can be seen nicely in the low seeming inter-atomic spring constants. E.g. the equilibrium position spring constant of an bond in diamond (sp3 carbon-carbon-bond) is about 440nN/nm or 0.44daN/cm (1daN~1kg).

In order to get a feel for these forces one can transform atomic spring constants unchanged to the macrocosm. This can be done by letting the number of parallel and serial bonds grow equally so that the changement of stiffness through serial and parallel connection of bonds compensate. Here for convenience 10,000,000,000 bonds are assumed to be chained serially. We must apply this scaling to the number of parallel bonds too but here it divides up in each dimension of the cross-section sqrt(10^10) = 100,000. With the diamond bond (C-C sp3) length of 1.532Amstrong and area per bond of 6.701Amstrong^2 = (2.59Amstrong)^2 one gets a diamond string (with square cross-section) of 1.532m length and 25.9um thickness side to side (half a hair) that retains the atomic spring constant of 440N/m or 0.44daN/cm (1daN~1kg) If you bind up a half liter bottle of water with that (somewhat dangerous knife like) string it will bend around 1cm.

Putting one end of the sting in a vacuum filled square piston that seals tightly shows how little effect everyday pressures have at the micro and nanocosmos. Taking 1bar = 10^5N/m^2 ambient pressure the string experiences a force of only 67.1µN and elongates 0.152µm an invisible amount.

Though as seen bonds are rather compliable DMEs are still hard diamond since hardness is closely related to tensile and compressive stress which is scale invariant. The small force representation of high pressures might be a bit counterintuitive and hard to grasp.

By making the compliance at the nanolevel experiencable the model with the weight on the one bond equivalent diamond string should make one (maybe obvious) practical thing clear. That it is very effective to focus forces.

In mechanosynthesis conical tips can easily focus forces down to a more compliable size level. Not much of a size difference is needed. Nanoscale manipulators in the machine phase can hold back on their supporting structures they're mounted to. It is easy to create DMEs with high internal strains such as strained shell cylindrical structures, press fittings, structures under high tensile stress and more. Great amounts of elastic energy can be stored (permanently or temporarily).

An example of safely usable pressures from Nanosystems section 2.3.2.:
Assuming ~1% strain the required stress is ~1% of diamonds young modulus. 10nN/nm^2 = 10GPa = 1000daN/mm^2 (1daN~1kg) this is 20% of the tensile strength of macro-scale diamond with natural flaws. Flawless mechanosynthetically assembled diamond will be capable of handling more stress.

Forces from shearing stresses

[Todo: add info about shearing stress]

Surfaces

When viewing the thickness of a surface as the distance from the point of maximally attractive VdW force to the point of equally repulsive VdW force (experienced by some probing tip) the thickness of the surface relative to the thickness of the diamondoid part is enormous. This makes DMEs somewhat soft in compressibility but not all that much as can be guessed by the compressibility of single crystalline graphite which is a stack of graphene sheets.

Scaling laws for electrical properties

[Todo: add further relevant scaling laws & example calculation]