Physical debugging

From apm
Jump to: navigation, search
This article is a stub. It needs to be expanded.

The inherent massive parallelism of macroscopic atomically precise products gives an opportunity to quickly check for basic design faults (weak spots).

Enrichment of damaged parts

If damage can be detected (e.g. suck movement, unresponsive, erronous responsive, ... ) with simple low level in place analytics one can "purify/enrich" the failing microcomponents for either their disposal or their analysis. To do so one can take the whole product apart with a nanofactory or with a microcomponent recomposer and possibly put it together again afterwards with the failed parts replaced. Alternatively microcomponent maintainance units can be used to extract the damaged microcomponens in an in place self repairing system (hot swapping).

Intermixed radiation damage

In a macroscopic product damage from ambient radiation is quickly ocurring. This doesnt bother a well designet product with integrated redundancy. It might be tricky to seperate radiation damage from other damage which is needed unless one is interested in the effects of radiation damage.

High level "laboratory" analytics

Visualisation with electron microscopy

Microcomponents could be stretched out in a single layer for imaging in an transmission electron microscope. They are quite thick and may be rather heterogeneous inside though so one wouldn't see much. Microcomponents may be designed to be further disassemblable - at this point it is ok if this is irreversible since the part is already broken.