Effects of current day experimental research limitations

From apm
Revision as of 15:46, 6 July 2021 by Apm (Talk | contribs) (Why is should be feasible despite all that: bold)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
This article is a stub. It needs to be expanded.

(wiki-TODO: discuss this)

High level physical effects that misleadingly may suggest infeasibility:

  • High wear in MEMS due to "stiction"
  • Focus on the for current day directly applicable material science (alloys)
  • Focus on the for material science interesting heavy metallic elements with intersting magnetic properties (f shells) – rare elements ...
  • Barely controllable diffusion: on surfaces, in grain boundaries, of dislocations
    Partly due to a focus on metals with exotic properties (lower periodic table) as catalysts where valence electron shells are vast and surface diffusion is fast
    (totally unphysical) visual analogy: Focus on a slippery ice rink rather than a muddy sticky gravel field.
  • High difficulty to achieve very high levels of vacuum (UHV at best – nowhere near PPV)
  • Immense difficulties with SPM: getting and keeping tips sharp reliably, limits in imageable hight steps, speed limits, ...
  • Difficulties in designing artificial proteins for binding (not to speak of catalysis)
  • ....

Why is should be feasible despite all that

Low level physical effects (from first principles) that prove feasibility:

There is also high level evidence but this is weaker:

Both low and high level evidence: