Colonization of the solar system

From apm
Revision as of 09:13, 7 February 2016 by Apm (Talk | contribs) (Asteroids in the main belt between mars and jupiter: added image of pallasite)

Jump to: navigation, search
This article is a stub. It needs to be expanded.

Bodies with Atmospheres

Atmospheres can deliver building materials in the easiest usable (do not use "digestable"!) standardized form.

Asteroids in the main belt between mars and jupiter

There is lots of planetary core material flying around in the main asteroid belt. Shown here is what is believed to be material of a kind that that can be found at the core mantle boundary of larger rocky planets.
  • pro: enormous accessible surfacer area - probably way greater than all the planets and moons together
  • pro: just the right temperature for the presence of a variety of materials
  • pro: no gravity traps
  • con: all the material is in the solid state requiring complex mining
  • con: laggy telecommunication in a dispersed net due to light-speed runtimes

Moons and dwarf planets in the outer solar system

Furter out in the solar system small bodies become increasingly icy. Water ice and at some point even nitrogen ice becomes rock forming material. If not enough carbon and silicon is present one might want to mechanosynthesize weaker bonding ices there and use those materials for not too demanding structural purposes

Flavors of diamondoid gem gum technology

Vastly differing chemical and thermal conditions at different places in the solar system could lead to differentiation (speciation?) of diamondoid technology into very different branches.

Structures built out of water ice via cryonic inter-molecular mechanosynthesis wont find much use beside ephemeral consumables on earth since they quickly melt when uncooled or diffuse when insufficiently cooled. Further out and farther from the sun though ice and other compounds that are volatiles on earth can be seriously used as a permanent building materials. This materials are also the most abundant materials in those regions so they are likely to be used.

Unlike methane water can't be safely polymerized to stuff that does not melt above 0°C. Long peroxide chains are a powerful explosives. Also oxygen polymers are un-branched linear chains and thus can't form tight meshed poly-cyclically looped covalent stiff diamondoid materials. So technology that uses only the elements oxygen and hydrogen for structural components (that is water) stays out there. Reasonably safely making explosive crystals from mostly water that do not melt will certainly be possible via mechanosynthesis since they can be made practically perfectly clean - the usefulness may be questionable.

  • Chemically reducing environments (nonoxidic compounds)
  • high temperature environments (refractory materials)
  • metal rich environments (planetary core material in the asteroid belt)