Nanomechanics is barely mechanical quantummechanics

From apm
Revision as of 19:51, 6 February 2016 by Apm (Talk | contribs) (Math)

Jump to: navigation, search

Math

Let us define "quantumness" as the ratio of the energy quantisation (the minimum allowed energy steps) to the average thermal energy in a single degree of freedom:
Quantumness: Q=ΔEET


First we'll need the thermal energy:
Equipartitioning: ET=12kBT

The size of the energy quanta ΔE
depends on the system under consideration.
To see quantum behaviour the system must be bounded thus reciprocative motion is considered.

Reciprocative linear motion

The uncertainty relation: ΔxΔph

Newton: ΔE=Δp22m

Quantumness: Q=h2kB1mΔx2T


Reciprocative circular motion

Here alpha is the fraction of a full circle that is passed through in a rotative oszillation.
For a normal unidirectional rotation alpha must be set to 2pi.

The uncertainty relation: αΔLh

Newton: ΔE=ΔL22I

Quantumness: Q=h2kB1Iα2T

Values

Average thermal energy per degree of freedom: ET=300K=4141023J


rotative (full 360°)

L0==1.0541034kgm2/s


L0=Iω0=2mr2ω


N2 nitrogen molecule: 2r=0.11nmmN=2.31026kg


ω0=2πf=7.51011s1


f0=119GHz


E0=Iω20/2=L0ω0/2


Size of energy quanta: E0=3.951023J


Q<1/100


Note that this is a single free floating molecule. In advanced nano-machinery there are axles made of thousands and thousands of atoms which are in turn stiffly integrated in an axle system made out of millions of atoms. This is making energy quantisation imperceptible even at liquid helium temperatures.

linear

...

general

Vibrations of individual molecules can behave quite quantummechanically even at room-temperature. This is the reason why the thermal capacity of gasses (needed energy per degree heated) can make crazy jumps even at relatively high temperatures. (Jumps with a factor significantly greater than one.)

Discussion

There are three parameters that can be changed to get something to behave more quantum mechanically.
The three options are:

  • (1) lowering temperature
  • (2) lowering inertia
  • (3) decreasing the degree of freedom