Energy storage cell

From apm
Revision as of 09:53, 1 May 2015 by Apm (Talk | contribs)

Jump to: navigation, search
This article defines a novel term (that is hopefully sensibly chosen). The term is introduced to make a concept more concrete and understand its interrelationship with other topics related to atomically precise manufacturing. For details go to the page: Neologism.

In advanced AP systems energy storage and conversion is more clearly distinct than in e.g. todays bulk electric accumulators.

Energy storage cells need chemomechanical converters or elektromechanical converters
and often some form of mechanical macroscopification to form a complete system.

AP systems can often avoid high energy densities which always are potentially dangerous since energy can be transmitted quite fast and efficiently (e.g. with energy transport cables)

Cells may be have various sizes sub equal or super microcomponent size.

Forms

for chemomechanical converters

  • radicals zip cells
  • micro to nano sized high pressure hydrogen capsules
  • nitrogen based compounds cells (avoiding explosiveness)
  • reactants choosen for maximal activation energy to increase safety (allowed by "the force focus scaling law")
  • many more ...

for entropomechanical converters

  • chainmolecule stretcher cells
  • more dense systems (working with gasses?)

for elektromechanical converters

capacitor cells: Todays capacitors already do a good job.

no conversion

flywheels cells: Like in all other cases an additional gear transmission (mechanomechanical conversion) is possible. Scaringly high power-spikes are possible.

energy elastic springs cells: lower energy density than chemomechanical converter cells but faster and more efficient.

Notes

Cryogenic hydrogen storage is inherently macroscopic. Nano-sized capsules have a huge surface to mass ratio making individual thermal isolation effectively infeasible.
[Todo: discuss (known) potential losses of cryogenic storage in an AP product].
Advanced AP systems can easily produce cryogenic temperatures via diamondoid heat pump systems.

  • Long range high power energy transportation might be better done mechanical

[todo: look wether entropomechanical and chemomechanical converters can be combined to get a safer energy storage]