Difference between revisions of "Van der Waals force"
(→Comparison: elaborated - more explicit) |
(→Related: added link to yet unwritten page * '''Intercrystolecular forces''') |
||
(26 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Stub}} | {{Stub}} | ||
+ | |||
+ | Up: [[Nonbonded interactions]] | ||
+ | |||
This page is not going to discuss the origin and nature of the VdW force but is focusing on practical applications and an intuitive understanding. | This page is not going to discuss the origin and nature of the VdW force but is focusing on practical applications and an intuitive understanding. | ||
== Practical usage == | == Practical usage == | ||
− | + | * [[Connection method]] | |
− | + | * TODO elaborate | |
− | + | == Getting an intuitive feel for this force that does not occur at the macroscale in everyday life == | |
− | + | ||
− | + | ||
− | + | ||
− | {{ | + | === Bond trustworthiness, bond area and temperature (energy) === |
+ | |||
+ | The question: VdW forces are "weak", so are they sufficient to hold stuff trustworthily together? | ||
+ | |||
+ | At room temperature a C-C bond practically does not break due to thermal motions. | ||
+ | So a VdW bond with an area big enough to provide the same bonding energy will too practically not break at room temperature. | ||
+ | As it turns out, this area is not all that big (relative of the area of a single C-C bond), so one might rely on VdW forces for reliably holding things together quite early on in the size scales of [[crystolecule]]s. | ||
+ | |||
+ | So to prevent thermal motion from knocking VdW bonds open it might not be necessary to do | ||
+ | some clever form closure designs <small>(that are then strongly locked at a bigger size scale)</small> | ||
+ | except maybe for very small parts at very high temperatures. {{todo|ckeck that}} | ||
+ | |||
+ | === VdW bonds – stronger than expected (force = energy per length) === | ||
+ | |||
+ | Two coplanar atomically flat surfaces attract each other quite a lot. <br> | ||
+ | The attractive pressure from VdW forces is in the low nN range per square nm. <br> | ||
+ | Here are two quite different values: | ||
+ | |||
+ | * ~1nN per square nm. Note that this equates to no less than around ~10,000 bar. <br> Original Source: (Nanosystems 9.7.1.) <br> indirect source: [http://www.nanomedicine.com/NMI/9.3.2.htm] (beware: the noted binding energy is mistakenly taken from a covalent interface - Nanosystems 9.7.3.) <br> double indirect source: [http://www.jetpress.org/volume13/Nanofactory.htm#s3.2] | ||
+ | * ~2.7nN per square nm. Note that this is about 1/20 of the tensile strength of diamond <br> Source: (Nanosystems 3.5.1.b) (And this is more than titanium and low grade steel. These are just two flat surfaces contacting. VdW forces are by no means weak from an intuitive pespective) | ||
+ | |||
+ | Especially if there is [[superlubrication]] a flat surfaces can still slide effortlessly on each other (that is - in case of small parts - relative motion may even be triggered by thermal motion) so depending on the use case male protrusions penetrating female indents may be needed to prevent that random 2D diffusion motion. <br>(related: [[intuitive feel]]) | ||
+ | |||
+ | === (stiffness = force per length) === | ||
+ | |||
+ | The stiffness of VdW bonds is substantially lower than the stiffness of bulk diamondoid material. | ||
+ | |||
+ | ''Infos from [[Nanosystems]] 9.7.1 (reformulated):''<br> | ||
+ | '''(30N/m)/nm^2''' is a '''lower bound''' for the expectable stiffness of a VdW bond between two complementary diamondoid surfaces. <br> A slab of diamond must be increased in thickness up to 30nm thick (about 150 C atom diameters) such that this slabs stiffness decreases down to the same value of stiffness the VdW bond features. {{wikitodo|illustrate this equivalence comparison}} | ||
+ | |||
+ | {{wikitodo|Retrace derivation & present more clearly.}}<br> | ||
+ | {{wikitodo|Comparison with stiffness of singular C-C bond. Which VdW area is needed for equivalent stiffness?}} | ||
+ | |||
+ | === Comparison in energy, force and stiffness === | ||
+ | |||
+ | Note: Force is the first spacial derivative of energy and stiffness is the second. | ||
+ | |||
+ | {{wikitodo|Make a proper table comparing energy, force and stiffness of a single covalent C-C bond to a surface to surface contact VdW bond by showing the areas that are necessary such that the VdW bond can provide the equivalent values than the single C-C bond. Note that these are three ''different'' areas.}} | ||
+ | |||
+ | ''' Bonding energies - Tensile strengths - Stiffnesses ''' | ||
+ | |||
+ | To get a better feel it can be helpful to compare energy strength and stiffness of VdW bonds | ||
+ | to the strength of material that is solidly covalently "[[quasi welding|welded]]" together. | ||
+ | This way it becomes clear that while VdW bonds are considered weak in comparison to | ||
+ | they are still very strong in an intuitive sense. | ||
+ | |||
+ | {{todo|Add the same info table as on VdW force page}} <br> | ||
+ | ['''Todo:''' Add table - make it visualizable for covalent bonds and VdW bonds] <br> | ||
+ | ['''Todo:''' show surface area thats VdW ashesion is energetically equivalent to one covalent bond - related: [[Form locking]]] | ||
== Theory == | == Theory == | ||
Line 18: | Line 66: | ||
Please use external sources - there are plenty out there. <br> | Please use external sources - there are plenty out there. <br> | ||
Wikipedia: [http://en.wikipedia.org/wiki/Van_der_Waals_force] | Wikipedia: [http://en.wikipedia.org/wiki/Van_der_Waals_force] | ||
+ | |||
+ | == In [[Nanosystems]] == | ||
+ | |||
+ | * Part I – Physical Principles > 3 Potential Energy Surfaces > ...<br> ... 3.3. Molecular mechanics > 3.3.2. The MM2 model > e. Nonbonded interactions. – (page 48) <br> ... 3.5. Continuum representations of surfaces > ... – (page 63) | ||
+ | * Part II – Components and Systems > 9 Nanoscale Structural Components > ...<br> ... 9.7. Adhesive interfaces > 9.7.1. Van der Waals attraction and interlocking structures – (page 270) | ||
+ | |||
+ | == Problems with the forces name == | ||
+ | |||
+ | The naming "Van der Waals force" is a bit cumbersome. <br> | ||
+ | We don't call gravity the "Isaac Newton force". <br> | ||
+ | How could we call the van der Waals Force (or London dispersion forces)? <br> | ||
+ | Anyone any ideas? | ||
+ | |||
+ | === Alternate naming suggestion === | ||
+ | |||
+ | A more practical name for the Van der Waals Force might be: <br> | ||
+ | ★ "omnididiatractic force" or <br> | ||
+ | ★ "oda foce" for short <br> | ||
+ | |||
+ | The nice thing about this name would be that <br> | ||
+ | is carries all the essential properties of this force. Like so: <br> | ||
+ | ★ '''omni'''presence <br> | ||
+ | ★ '''di'''verse '''di'''poles as its origins <br> | ||
+ | ★ its universal '''attracti'''vity <br> | ||
+ | |||
+ | Fun SciFi entertainment media aspect: <br> | ||
+ | The name "oda" is part of Yoda (Star Wars) who is mater of "the force". <br> | ||
+ | "The name the forces properties it carries." He would say. | ||
== Related == | == Related == | ||
+ | * [[Energy, force, and stiffness]] | ||
* [[Scaling law]]s | * [[Scaling law]]s | ||
* [[Connection method]] | * [[Connection method]] | ||
* [[Macroscale style machinery at the nanoscale]] | * [[Macroscale style machinery at the nanoscale]] | ||
+ | * [[Adhesive interfaces]] | ||
+ | * '''[[VdW suck-in]]''' | ||
+ | * '''[[Intercrystolecular forces]]''' | ||
+ | |||
+ | == External links == | ||
+ | |||
+ | Wikipedia: | ||
+ | * [https://en.wikipedia.org/wiki/Van_der_Waals_force Van der Waals force] | ||
+ | * [https://en.wikipedia.org/wiki/London_dispersion_force London dispersion force] | ||
+ | |||
+ | Twitter alternate naming suggestions: | ||
+ | * https://twitter.com/mechadense/status/1532032121602289664?s=20&t=CM0IGEpcOo67KRC3eG7dMA | ||
+ | * https://twitter.com/mechadense/status/1530255543276818433?s=20&t=CM0IGEpcOo67KRC3eG7dMA |
Latest revision as of 10:43, 11 February 2024
This page is not going to discuss the origin and nature of the VdW force but is focusing on practical applications and an intuitive understanding.
Contents
Practical usage
- Connection method
- TODO elaborate
Getting an intuitive feel for this force that does not occur at the macroscale in everyday life
Bond trustworthiness, bond area and temperature (energy)
The question: VdW forces are "weak", so are they sufficient to hold stuff trustworthily together?
At room temperature a C-C bond practically does not break due to thermal motions. So a VdW bond with an area big enough to provide the same bonding energy will too practically not break at room temperature. As it turns out, this area is not all that big (relative of the area of a single C-C bond), so one might rely on VdW forces for reliably holding things together quite early on in the size scales of crystolecules.
So to prevent thermal motion from knocking VdW bonds open it might not be necessary to do some clever form closure designs (that are then strongly locked at a bigger size scale) except maybe for very small parts at very high temperatures. (TODO: ckeck that)
VdW bonds – stronger than expected (force = energy per length)
Two coplanar atomically flat surfaces attract each other quite a lot.
The attractive pressure from VdW forces is in the low nN range per square nm.
Here are two quite different values:
- ~1nN per square nm. Note that this equates to no less than around ~10,000 bar.
Original Source: (Nanosystems 9.7.1.)
indirect source: [1] (beware: the noted binding energy is mistakenly taken from a covalent interface - Nanosystems 9.7.3.)
double indirect source: [2] - ~2.7nN per square nm. Note that this is about 1/20 of the tensile strength of diamond
Source: (Nanosystems 3.5.1.b) (And this is more than titanium and low grade steel. These are just two flat surfaces contacting. VdW forces are by no means weak from an intuitive pespective)
Especially if there is superlubrication a flat surfaces can still slide effortlessly on each other (that is - in case of small parts - relative motion may even be triggered by thermal motion) so depending on the use case male protrusions penetrating female indents may be needed to prevent that random 2D diffusion motion.
(related: intuitive feel)
(stiffness = force per length)
The stiffness of VdW bonds is substantially lower than the stiffness of bulk diamondoid material.
Infos from Nanosystems 9.7.1 (reformulated):
(30N/m)/nm^2 is a lower bound for the expectable stiffness of a VdW bond between two complementary diamondoid surfaces.
A slab of diamond must be increased in thickness up to 30nm thick (about 150 C atom diameters) such that this slabs stiffness decreases down to the same value of stiffness the VdW bond features. (wiki-TODO: illustrate this equivalence comparison)
(wiki-TODO: Retrace derivation & present more clearly.)
(wiki-TODO: Comparison with stiffness of singular C-C bond. Which VdW area is needed for equivalent stiffness?)
Comparison in energy, force and stiffness
Note: Force is the first spacial derivative of energy and stiffness is the second.
(wiki-TODO: Make a proper table comparing energy, force and stiffness of a single covalent C-C bond to a surface to surface contact VdW bond by showing the areas that are necessary such that the VdW bond can provide the equivalent values than the single C-C bond. Note that these are three different areas.)
Bonding energies - Tensile strengths - Stiffnesses
To get a better feel it can be helpful to compare energy strength and stiffness of VdW bonds to the strength of material that is solidly covalently "welded" together. This way it becomes clear that while VdW bonds are considered weak in comparison to they are still very strong in an intuitive sense.
(TODO: Add the same info table as on VdW force page)
[Todo: Add table - make it visualizable for covalent bonds and VdW bonds]
[Todo: show surface area thats VdW ashesion is energetically equivalent to one covalent bond - related: Form locking]
Theory
Please use external sources - there are plenty out there.
Wikipedia: [3]
In Nanosystems
- Part I – Physical Principles > 3 Potential Energy Surfaces > ...
... 3.3. Molecular mechanics > 3.3.2. The MM2 model > e. Nonbonded interactions. – (page 48)
... 3.5. Continuum representations of surfaces > ... – (page 63) - Part II – Components and Systems > 9 Nanoscale Structural Components > ...
... 9.7. Adhesive interfaces > 9.7.1. Van der Waals attraction and interlocking structures – (page 270)
Problems with the forces name
The naming "Van der Waals force" is a bit cumbersome.
We don't call gravity the "Isaac Newton force".
How could we call the van der Waals Force (or London dispersion forces)?
Anyone any ideas?
Alternate naming suggestion
A more practical name for the Van der Waals Force might be:
★ "omnididiatractic force" or
★ "oda foce" for short
The nice thing about this name would be that
is carries all the essential properties of this force. Like so:
★ omnipresence
★ diverse dipoles as its origins
★ its universal attractivity
Fun SciFi entertainment media aspect:
The name "oda" is part of Yoda (Star Wars) who is mater of "the force".
"The name the forces properties it carries." He would say.
Related
- Energy, force, and stiffness
- Scaling laws
- Connection method
- Macroscale style machinery at the nanoscale
- Adhesive interfaces
- VdW suck-in
- Intercrystolecular forces
External links
Wikipedia:
Twitter alternate naming suggestions: