Difference between revisions of "Hartree-Fock method"
From apm
(just a start for now) |
(related section and link to Wikipedia page about Density functional theory) |
||
(One intermediate revision by the same user not shown) | |||
Line 16: | Line 16: | ||
'''Accounted for:''' | '''Accounted for:''' | ||
* Fermi correlation part of electron correlation (which is an effect of electron exchange) | * Fermi correlation part of electron correlation (which is an effect of electron exchange) | ||
+ | |||
+ | == Related == | ||
+ | |||
+ | * [[Density of states]] | ||
+ | * [[Density functional theory]] | ||
== External links == | == External links == | ||
Line 38: | Line 43: | ||
To go beyond "mean field approximation" and beyond representability by slater detierminants there is: | To go beyond "mean field approximation" and beyond representability by slater detierminants there is: | ||
* [https://en.wikipedia.org/wiki/Post%E2%80%93Hartree%E2%80%93Fock Post–Hartree–Fock] | * [https://en.wikipedia.org/wiki/Post%E2%80%93Hartree%E2%80%93Fock Post–Hartree–Fock] | ||
+ | ---- | ||
+ | Completely different methods: | ||
+ | * [https://en.wikipedia.org/wiki/Category:Electronic_structure_methods Category:Electronic_structure_methods] | ||
+ | * '''[https://en.wikipedia.org/wiki/Density_functional_theory Density functional theory]''' |
Latest revision as of 13:07, 7 June 2023
(wiki-TODO: Extend on this)
The following is basically taken from wikipedia and reformulated in an hopefully more readable way.
Assumptions:
- the exact N-body wave function of the system can be approximated by a single Slater determinant
- the wave function is a single configuration state function with well-defined quantum numbers
- a quantum many-body system in a stationary state BUT the energy level is not necessarily the ground state
- Restricted Hartree–Fock method: The atom or molecule is a closed-shell system with all orbitals doubly occupied.
Approximations:
- atomic cores as static point particles: Born–Oppenheimer approximation
- nonrelativistic (classical momentum operator)
- all energy eigenfunctions are describable by Slater-determinants. One Slater-determinant per eigenfunction.
- An electron "sees" all other electrons as an averaged out density cloud.
This is the mean field approximation
=> Coulomb correlation part of electron correlation is not accounted for
=> The Hartree–Fock cannot capture London dispersion
Accounted for:
- Fermi correlation part of electron correlation (which is an effect of electron exchange)
Related
External links
- Hartree-Fock method
- Hartree–Fock algorithm
- Roothaan–Hall equations – representation of the Hartree–Fock equation in a non orthonormal basis set which can be of Gaussian-type or Slater-type
- Gaussian orbital & Slater-type orbital
- Linear combination of atomic orbitals
- Slater determinant for fermions (or "Slater permanent" for bosons)
- Configuration state function
- Fock operator / Fock matrix
More advanced metods for when there are unpaired electrons:
To go beyond "mean field approximation" and beyond representability by slater detierminants there is:
Completely different methods: