Difference between revisions of "Mechadense's Wiki about Atomically Precise Manufacturing"

From apm
Jump to: navigation, search
(Brief introduction videos: added link to: "Nanotechnology: the big picture ..." Video)
(Webpages: added web-links to IMM and Nanofactory Collaboration)
(48 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|style="background:#FFCCCC; color:#000000; width: 80%; text-align:center;" |  '''Language: en | [[Mechandense's Wiki über atomar präzise Herstellung| Sprache: de]]'''  
 
|style="background:#FFCCCC; color:#000000; width: 80%; text-align:center;" |  '''Language: en | [[Mechandense's Wiki über atomar präzise Herstellung| Sprache: de]]'''  
 
|}
 
|}
* '''[[General Introduction to atomically precise manufacturing|Intro:]]''' Here is a detailed introduction to atomically precise manufacturing as a whole.
+
__NOTOC__
* [[The DAPMAT demo project]]
+
= The far term target =
 +
 
 
{{Template:Nanofactory introduction}}
 
{{Template:Nanofactory introduction}}
  
The existence of a personal fabricator will have profound impact on global human society.
+
The existence of a personal fabricator will have profound impact human society on a global scale.
 
The basis for such a personal fabricator - the '''atomically precise manufacturing (APM) technology''' - is beginning to be figured out today.
 
The basis for such a personal fabricator - the '''atomically precise manufacturing (APM) technology''' - is beginning to be figured out today.
  
= Guided Tour =
+
= Dodge the trapdoors =
  
A general introduction to atomically precise manufacturing.
+
First off: Let's get the major obstacles out of the way.
It is meant for a wide target audience ranging from newbie to expert and from young to old.
+
* '''There are no "nanobots" here!''' <br>Check the info pages "[[Prime distractions]]" and "[[No nanobots]]".
It is still a far stretch from being in a somewhat coherent state so please excuse the links dangling into construction sites.
+
* '''Macroscale style machinery at the nanoscale?!'''<br> It's well known, that there are several severe concerns regarding this idea. And for very good reasons.<br> Less known is, that all of those major concerns have been considered in quite some detail with rather surprising results. Check out the main article discussing the concerns here: <br>[[Macroscale style machinery at the nanoscale]]
 +
-----
 +
* '''Yes, lifes nanomachinery (molecular biology) does NOT constitute a feasibility proof of the targeted kind of technology.''' But it does not constitute an infeasibility proof either. For details see: "[[Nature does it differently]]". <br>What does provide the very high confidence in feasibility is low level [[exploratory engineering]] applied without compromises. <br>Additionally there are successful experimental demonstrations of manipulation of single atoms. Repeatable, precise, with strong covalent bonds, and at decently high temperatures ("decently high" meaning: no liquid helium involved). Plus there's a clear path how to speed this up to the necessary operations frequencies. Namely by scaling down the placement mechanisms.
 +
* '''No, making every structure permitted by physical law is NOT the goal here.''' Quite the contrary actually. What we want is to cheat and make it seem as if we could. It's even encoded in the name that this wiki uses to refer to the far term target. Specifically in the "gem" and "gum" parts in "gem-gum-tec". For details check out: "[[The defining traits of gem-gum-tec]]" and "[[Every structure permissible by physical law]]".
 +
* '''No, using soft nanomachinery to bootstrap stiff nanomachinery is not an abandonment of principles.''' It just might be a more practical approach to get to the target faster. See: "[[Pathways]]".
  
{{Template:Orientation}}
+
== What APM is not ==
__NOTOC__
+
 
 +
While early APM may have overlap with these areas the far term goals are very different.
 +
 
 +
* [[Soft nanomachines]]: APM is all about targeting [[stiffness]] / stiff nanomachines / "hard" nanomachines. <br>Nonetheless soft nanomachines can be very useful in the bootstrapping process. <br><small>Note though, that self assembly (useful in bootstrapping) does not essentially rely on a lack of stiffness aka softness. There are experiments with hierarchical self assembly of structural DNA nanotechnology that have clearly demonstrated this {{wikitodo|add reference}}.</small>
 +
* [[Molecular biology]]: One main far term target in molecular biology is a complete reverse engineering of natures nanomachinery for grand improvements in medicine. This is strongly unrelated to the far term target of APM. A particular example where the interests diverge: The very difficult folding problem for natural proteins versus the relatively simple de-novo-protein-design for artificial nanomachinery.
 +
* [[Synthetic biology]]: The far term targets of this research is the recreation and expansion of the nanomachinery of life. It goes pretty much 180° in the opposite direction of APM. <br><small>(Not to say that this research is not valuable in its own right. Its far term targets are just maximally unrelated to R&D efforts targeting APM)</small>
 +
 
 +
Main article: "[[Brownian technology path]]"
 +
 
 +
== What APM actually is ==
 +
 
 +
APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.
 +
 
 +
= APM in the near term and APM in the far term =
 +
 
 +
* On this wiki "atomically precise manufacturing" (or APM) will be interpreted in a wider sense. Including both earlier precursor systems in the near term and the targeted later systems in the far term.
 +
* On this wiki the shorthand '''"gem-gum technology"''' will be used to refer to the '''far term target'''.<br><small>''A technically accurate description of the far term target technology would be:<br>"atomically resolving gemstone based metamaterial manufacturing and technology"''</small>
 +
For more details see the main article:<br>
 +
[[Near term and far term]].
 +
 
 +
= Take a tour =
 +
 
 +
Take a guided tour: <small>(Work in progress. Please excuse the links dangling into construction sites.)</small><br>
 +
* [[Tour by topic]]
 +
* [[Tour by map]]
 +
Or take a shortcut directly from here:
 +
 
 +
== What, Why, How, When ==
 +
 
 +
{|style="background-color:#ccccff;" cellpadding="5"
 +
|DEFINITION:
 +
|'''[[About APM]]'''
 +
|'''What''' APM is not and what it is.
 +
|-
 +
|MOTIVATION:
 +
|[[Reasons for APM]]
 +
| '''Why''' we need APM.
 +
|-
 +
|OBSTACLES:
 +
|[[conceptual and institutional challenges]]
 +
| '''What''' impedes progress towards APM.
 +
|-
 +
|APPROACH:
 +
|[[Pathways to advanced APM systems|Pathways to advanced APM]]
 +
|'''How''' we get to advanced APM.
 +
|-
 +
|PROGRESSION:
 +
|[[Time till advanced APM]]
 +
|'''When''' we will get to advanced APM?
 +
|}
 +
----
 +
Also there are:
 +
* the '''[[goals of this wiki]]'''
 +
* this wiki's [[APM:About|impressum]]
 +
* related 3D printing projects: [[The DAPMAT demo project|educational illustration of various principles]]; [[ReChain project]]; [[RepRec project]]
 +
 
 +
Misc:
 +
* '''[[General Introduction to atomically precise manufacturing|Intro:]]''' Here is an old version of the landing page. Containing a detailed introduction to atomically precise manufacturing as a whole. (warning, lots of text)
  
 
= Links =
 
= Links =
Line 24: Line 86:
 
* [http://www.sci-nanotech.com Forum]
 
* [http://www.sci-nanotech.com Forum]
 
* [http://www.foresight.org/ Foresight Institute: Nanotechnology]
 
* [http://www.foresight.org/ Foresight Institute: Nanotechnology]
 +
* [http://www.imm.org/ Institute for Molecular Manufacturing]
 +
* [http://www.molecularassembler.com/Nanofactory/ Nanofactory Collaboration]
 
* [http://www.oxfordmartin.ox.ac.uk/downloads/academic/201310Nano_Solutions.pdf Disquisition 2013 "Nano-solutions for the 21st century: Unleashing the fourth technological revolution"]
 
* [http://www.oxfordmartin.ox.ac.uk/downloads/academic/201310Nano_Solutions.pdf Disquisition 2013 "Nano-solutions for the 21st century: Unleashing the fourth technological revolution"]
 
* [http://www.zyvexlabs.com/Publications2010/WhitePapers/APM_Q_and_A.html Zyvex's definition of APM]
 
* [http://www.zyvexlabs.com/Publications2010/WhitePapers/APM_Q_and_A.html Zyvex's definition of APM]
Line 35: Line 99:
 
* Chris Phoenix on Molecular Manufacturing (2014-09?) [https://www.youtube.com/watch?v=-tCa0MxtgFI (alternative 2)][http://tsf.njit.edu/2006/spring/phoenix.php (alternative1)] [https://www.youtube.com/watch?v=1eEzD_FVCmk Nanotechnologist (older dead link)]
 
* Chris Phoenix on Molecular Manufacturing (2014-09?) [https://www.youtube.com/watch?v=-tCa0MxtgFI (alternative 2)][http://tsf.njit.edu/2006/spring/phoenix.php (alternative1)] [https://www.youtube.com/watch?v=1eEzD_FVCmk Nanotechnologist (older dead link)]
 
* [https://www.youtube.com/watch?v=zG-CQ-ZKh80 Dr Eric Drexler - Remaking the 21st Century] (2014-01-23) '''long! 1h 14min'''
 
* [https://www.youtube.com/watch?v=zG-CQ-ZKh80 Dr Eric Drexler - Remaking the 21st Century] (2014-01-23) '''long! 1h 14min'''
* [http://www.youtube.com/watch?v=1bw6Zi17DBI Video of oxford talk] (2014-01-22): Eric K. Drexler speaks about his new book "Radical Abundance"
+
* [http://www.youtube.com/watch?v=1bw6Zi17DBI Video of oxford talk] (2014-01-22): Eric K. Drexler speaks about his new book "[[Radical Abundance]]"
 
* [https://vimeo.com/62119582 John Randall: "Atomically Precise Manufacturing" at Foresight Technical Conference 2013] <br> '''[https://vimeo.com/album/2331977 Illuminating Atomic Precision: Foresight Technical Conference January 2013]'''
 
* [https://vimeo.com/62119582 John Randall: "Atomically Precise Manufacturing" at Foresight Technical Conference 2013] <br> '''[https://vimeo.com/album/2331977 Illuminating Atomic Precision: Foresight Technical Conference January 2013]'''
 
* [http://vimeo.com/12768578 Fully Printed] (2010-06) - Note: '''[[Diamondoid]] nanofactories will look and work differently and [[misconceptions#no food|won't produce food]]'''.
 
* [http://vimeo.com/12768578 Fully Printed] (2010-06) - Note: '''[[Diamondoid]] nanofactories will look and work differently and [[misconceptions#no food|won't produce food]]'''.
Line 41: Line 105:
 
* [https://www.youtube.com/watch?v=cdKyf8fsH6w Ralph Merkle - An introduction to Molecular Nanotechnology] (2009-11)
 
* [https://www.youtube.com/watch?v=cdKyf8fsH6w Ralph Merkle - An introduction to Molecular Nanotechnology] (2009-11)
 
* presentation by Phillip Moriarty (2009-09): <br> SENS4 - Molecular Nanotechnology in the Real World: How Feasible is a Nanofactory? <br> [https://www.youtube.com/watch?v=5XPE07QIFBM (1/4)] - [https://www.youtube.com/watch?v=R687ErdGGOU (2/4)] - '''[https://www.youtube.com/watch?v=uBrltpO8mXE (3/4)]''' - [https://www.youtube.com/watch?v=m3U44vsY28o (4/4)]
 
* presentation by Phillip Moriarty (2009-09): <br> SENS4 - Molecular Nanotechnology in the Real World: How Feasible is a Nanofactory? <br> [https://www.youtube.com/watch?v=5XPE07QIFBM (1/4)] - [https://www.youtube.com/watch?v=R687ErdGGOU (2/4)] - '''[https://www.youtube.com/watch?v=uBrltpO8mXE (3/4)]''' - [https://www.youtube.com/watch?v=m3U44vsY28o (4/4)]
* Nottingham Nanotechnology debate (2005-08-24):<br> Unfortunately videos got deleted :( <br> [https://www.youtube.com/watch?v=yQxTOqvZ9j8 (1/7)] - [https://www.youtube.com/watch?v=N8UyvPbyqz0 (2/7)] - [https://www.youtube.com/watch?v=oCZyc4MfwVQ (3/7)] - [https://www.youtube.com/watch?v=IVP4fBnirxo (4/7)] - [https://www.youtube.com/watch?v=Hn1i7R-0kzQ (5/7)] - [https://www.youtube.com/watch?v=0uITrLJeiZg (6/7)] - [https://www.youtube.com/watch?v=ZWWzgiqMfNs (7/7)] -- repaired links [http://www.dailymotion.com/video/x31uo9s (7/7)]
+
* Nottingham Nanotechnology debate (2005-08-24):<br>[https://vimeo.com/227341986 (recording of the whole debate)]<br> Unfortunately videos got deleted :( <br> [https://www.youtube.com/watch?v=yQxTOqvZ9j8 (1/7)] - [https://www.youtube.com/watch?v=N8UyvPbyqz0 (2/7)] - [https://www.youtube.com/watch?v=oCZyc4MfwVQ (3/7)] - [https://www.youtube.com/watch?v=IVP4fBnirxo (4/7)] - [https://www.youtube.com/watch?v=Hn1i7R-0kzQ (5/7)] - [https://www.youtube.com/watch?v=0uITrLJeiZg (6/7)] - [https://www.youtube.com/watch?v=ZWWzgiqMfNs (7/7)] -- repaired links [http://www.dailymotion.com/video/x31uo9s (7/7)]
 
----
 
----
 
* [https://www.youtube.com/watch?v=_TbWwN93YyE BBC Horizon Nanoutopia (1995)][http://www.disclose.tv/action/viewvideo/154610/BBC_Horizon__Nanoutopia_1995/  (broken link#2)] [http://www.youtube.com/watch?v=IaSgP_KyZiY (older broken link)] - Note: '''The term "nanotechnology" turned out to be to unspecific and the assembler concept is now superseded by the nanofactory concept.''' The complexity of a nanofactory will be akin to modern day computer chips.
 
* [https://www.youtube.com/watch?v=_TbWwN93YyE BBC Horizon Nanoutopia (1995)][http://www.disclose.tv/action/viewvideo/154610/BBC_Horizon__Nanoutopia_1995/  (broken link#2)] [http://www.youtube.com/watch?v=IaSgP_KyZiY (older broken link)] - Note: '''The term "nanotechnology" turned out to be to unspecific and the assembler concept is now superseded by the nanofactory concept.''' The complexity of a nanofactory will be akin to modern day computer chips.

Revision as of 16:23, 26 August 2018

Language: en | Sprache: de

The far term target

A personal desktop gem-gum factory fabblet with dynamically deployed protective hood.

The personal gem gum factory is:

  • Your personal device that can push out virtually every thing* of your daily use.
    (* at least every inedible thing)

The personal gem gum factory makes:

  • Your products that are as cheap as the abundant mining-free raw materials that it processes.
  • Your products that are far superior to today's best and ridiculously expensive high tech products.
  • Your products potentially in an environmentally friendly effluent free way
    (also advanced recycling is faster than producing from scratch)
Graphical Infosheets: [1] (work in progress)

The existence of a personal fabricator will have profound impact human society on a global scale. The basis for such a personal fabricator - the atomically precise manufacturing (APM) technology - is beginning to be figured out today.

Dodge the trapdoors

First off: Let's get the major obstacles out of the way.

  • There are no "nanobots" here!
    Check the info pages "Prime distractions" and "No nanobots".
  • Macroscale style machinery at the nanoscale?!
    It's well known, that there are several severe concerns regarding this idea. And for very good reasons.
    Less known is, that all of those major concerns have been considered in quite some detail with rather surprising results. Check out the main article discussing the concerns here:
    Macroscale style machinery at the nanoscale

  • Yes, lifes nanomachinery (molecular biology) does NOT constitute a feasibility proof of the targeted kind of technology. But it does not constitute an infeasibility proof either. For details see: "Nature does it differently".
    What does provide the very high confidence in feasibility is low level exploratory engineering applied without compromises.
    Additionally there are successful experimental demonstrations of manipulation of single atoms. Repeatable, precise, with strong covalent bonds, and at decently high temperatures ("decently high" meaning: no liquid helium involved). Plus there's a clear path how to speed this up to the necessary operations frequencies. Namely by scaling down the placement mechanisms.
  • No, making every structure permitted by physical law is NOT the goal here. Quite the contrary actually. What we want is to cheat and make it seem as if we could. It's even encoded in the name that this wiki uses to refer to the far term target. Specifically in the "gem" and "gum" parts in "gem-gum-tec". For details check out: "The defining traits of gem-gum-tec" and "Every structure permissible by physical law".
  • No, using soft nanomachinery to bootstrap stiff nanomachinery is not an abandonment of principles. It just might be a more practical approach to get to the target faster. See: "Pathways".

What APM is not

While early APM may have overlap with these areas the far term goals are very different.

  • Soft nanomachines: APM is all about targeting stiffness / stiff nanomachines / "hard" nanomachines.
    Nonetheless soft nanomachines can be very useful in the bootstrapping process.
    Note though, that self assembly (useful in bootstrapping) does not essentially rely on a lack of stiffness aka softness. There are experiments with hierarchical self assembly of structural DNA nanotechnology that have clearly demonstrated this (wiki-TODO: add reference).
  • Molecular biology: One main far term target in molecular biology is a complete reverse engineering of natures nanomachinery for grand improvements in medicine. This is strongly unrelated to the far term target of APM. A particular example where the interests diverge: The very difficult folding problem for natural proteins versus the relatively simple de-novo-protein-design for artificial nanomachinery.
  • Synthetic biology: The far term targets of this research is the recreation and expansion of the nanomachinery of life. It goes pretty much 180° in the opposite direction of APM.
    (Not to say that this research is not valuable in its own right. Its far term targets are just maximally unrelated to R&D efforts targeting APM)

Main article: "Brownian technology path"

What APM actually is

APM is basically the capability of manufacturing products such that the atoms they are constituted of link (bind) to each other in "exactly" the way one desires them to. Since "absolute exactness" in other words "making no errors ever" is a fundamental physical impossibility one just aims for extremely low error rates. On the long run error rates comparable to the bit-error-rates one can find in todays digital data processing systems.

APM in the near term and APM in the far term

  • On this wiki "atomically precise manufacturing" (or APM) will be interpreted in a wider sense. Including both earlier precursor systems in the near term and the targeted later systems in the far term.
  • On this wiki the shorthand "gem-gum technology" will be used to refer to the far term target.
    A technically accurate description of the far term target technology would be:
    "atomically resolving gemstone based metamaterial manufacturing and technology"

For more details see the main article:
Near term and far term.

Take a tour

Take a guided tour: (Work in progress. Please excuse the links dangling into construction sites.)

Or take a shortcut directly from here:

What, Why, How, When

DEFINITION: About APM What APM is not and what it is.
MOTIVATION: Reasons for APM Why we need APM.
OBSTACLES: conceptual and institutional challenges What impedes progress towards APM.
APPROACH: Pathways to advanced APM How we get to advanced APM.
PROGRESSION: Time till advanced APM When we will get to advanced APM?

Also there are:

Misc:

  • Intro: Here is an old version of the landing page. Containing a detailed introduction to atomically precise manufacturing as a whole. (warning, lots of text)

Links

Webpages

Brief introduction videos




Locally hosted files